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ESTIMATION OF DRIFT PARAMETER AND CHANGE POINT

VIA KALMAN-BUCY FILTER FOR LINEAR SYSTEMS WITH

SIGNAL DRIVEN BY A FRACTIONAL BROWNIAN MOTION

AND OBSERVATION DRIVEN BY A BROWNIAN MOTION

M.N. MISHRA AND B.L.S. PRAKASA RAO

Abstract. We study the estimation of the drift parameter and the change
point obtained through a Kalman-Bucy filter for linear systems with signal
driven by a fractional Brownian motion and the observation driven by a

Brownian motion.

1. Introduction

Change-point problems or disorder problems have been of interest to statis-
ticians for their applications and for probabilists for their challenging problems.
Recent applications of change-point methods include finance, statistical image
processing and edge detection in noisy images which can be considered as a multi-
dimensional change-point and boundary detection problem. Estimation of change-
points in economic models such as split or two-phase regression and changes in
hazard or failure rates in modelling life times after bone-marrow transplantation
of leukemia patients is of practical interest. A study of change-point problems
and their applications are discussed in the monograph on change-point problems
edited by Carlstein et al. (1994). Csorgo and Horvath (1997) discuss limit the-
orems in change point analysis. Deshayes and Picard (1984) study asymptotic
distributions of tests and estimators for change point in the classical statistical
model of independent observations (cf. Prakasa Rao (1987)). The problem of esti-
mation of both the change point and parameters in the drift and diffusion has been
considered recently by many authors in continuous as well as discrete time. The
disorder problem for diffusion type processes, that is, processes driven by Wiener
process, is investigated in Kutoyants (1984), Kutoyants (1994) and more recently
in Kutoyants (2004). Kutoyants (1994) considered the problem of simultaneous
estimation of the trend parameter and change point for diffusion type processes.
Prakasa Rao (1999) gives a comprehensive survey on problems of estimation for
diffusion type processes observed over in continuous time or over discrete time.
For some recent work on the change point problems for diffusion processes, see
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Lee et al. (2006), Song and Lee (2009), De Gregorio and Iacus (2008) and Ia-
cus and Yoshida (2010, 2012). There has been a recent interest to study similar
problems for stochastic processes driven by a fractional Brownian motion (fBm) in
view of their applications for modeling time series which are long-range dependent.
In a recent paper, Kleptsyna and Le Breton (2002) studied parameter estimation
problems for fractional Ornstein-Uhlenbeck type process. This is a fractional ana-
logue of the Ornstein-Uhlenbeck process, that is, a continuous time first order
autoregressive process X = {Xt, t ≥ 0} which is the solution of a one-dimensional
homogeneous linear stochastic differential equation driven by a fractional Brown-
ian motion (fBm) WH = {WH

t , t ≥ 0} with Hurst parameter H ∈ [1/2, 1). Such a
process is the unique Gaussian process satisfying the linear integral equation

Xt = x0 + θ

∫ t

0

Xsds+ σWH
t , t ≥ 0. (1.1)

They investigate the problem of estimation of the parameters θ and σ2 based on
the observation {Xs, 0 ≤ s ≤ T} and prove that the maximum likelihood estimator

θ̂T is strongly consistent as T → ∞. A survey of results on statistical inference for
fractional diffusion processes, that is, processes driven by a fractional Brownian
motion, is given in Prakasa Rao (2010). For more recent work on parametric esti-
mation for fractional Ornstein-Uhlenbeck process, see Xiao et al. (2011), Hu and
Nualart (2010) and Hu et al. (2011). Asymptotic properties of MLE for partially
observed fractional diffusion system are investigated in Brouste and Kleptsyna
(2010) and the problem of optimal sequential change detection for fractional diffu-
sion type processes is studied in Chronopoulou and Fellouris (2013). Mishra and
Prakasa Rao (2014 a,b) have considered the problem of estimation of the change
point and the drift parameter for fractional diffusion processes. Chronopoulou
and Tindel (2013) discuss problems of estimation for fractional differential equa-
tions based on discrete data using the tools from Malliavin calculus. Problem
of estimation of change point via Kalman-Bucy filter for linear systems driven
by fractional Brownian motions is studied in Mishra and Prakasa Rao (2016a).
Local asymptotic normality and estimation of drift parameter for linear systems
driven by fractional Brownian motions are investigated in Mishra and Prakasa Rao
(2016b). A special case of local asymptotic normality and estimation of the drift
parameter, via Kalman-Bucy filter for a linear system with the signal driven by a
fractional Brownian motion and the observation driven by a Brownian motion, is
discussed in Mishra and Prakasa Rao (2016c).

Our aim in this paper is to consider estimation of the change point τ and
the drift parameter θ for a linear system when the signal is driven by fractional
Brownian motion and the observation is driven by a Brownian motion with a small
diffusion coefficient. We assume that τ ∈ [t1, t2] and θ ∈ Θ compact in R. Consider
the linear system

dXt = θXtdt+ ϵ dV H
t , X0 = x0 ̸= 0, 0 ≤ t ≤ T (1.2)

dYt = ft(τ)Xtdt+ ϵ dWt, Y0 = y0, 0 ≤ t ≤ T
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where {V H
t , 0 ≤ t ≤ T} is the standard fractional Brownian motion with Hurst pa-

rameterH ∈
[
1
2 , 1

]
and {Wt, 0 ≤ t ≤ T} is the standard Brownian motion indepen-

dent of each other. Suppose that the function ft(τ) = h if t ∈ (0, τ ], and ft(τ) = g
if [τ, T ] where h and g are known constants with h ̸= g. We assume that the pro-
cess {Yt, 0 ≤ t ≤ T} is observable but the state {Xt, 0 ≤ t ≤ T} of the system is
unobservable.

We now estimate the change point τ by τ̂ϵ and θ by θ̂ϵ based on the observation
{Yt, 0 ≤ t ≤ T} by the maximum likelihood method and study the asymptotic
properties following the methods in Ibragimov and Has’minskii (1981) and Prakasa
Rao (1968). Kutoyants (1994) investigated a similar problem for linear systems
driven by independent Brownian motions. We show that the normalized sequence

(ϵ̂−1(θ̂ϵ − θ), ϵ−2(τ̂ϵ − τ))

has a limiting distribution as ϵ → 0. We note that the change point problem be-
longs to a class of non-regular statistical problems in the sense that the rate of
convergence of the estimator τ̂ϵ here is higher than the standard rate of conver-
gence of the maximum likelihood estimator of a parameter in the classical case of
independent and identically distributed observations with a density function which
is twice differentiable with finite positive Fisher information. This was earlier ob-
served by Chernoff and Rubin (1955) in their study of estimation of the change
point for a rectangular distribution, Deshayes and Picard (1984) in their study of
estimation of the change point and by Prakasa Rao (1968) in his study of estima-
tion of the location of the cusp of a continuous density. The rate of convergence
of the estimator τ̂ϵ observed here is ϵ2 as ϵ → 0.

2. Preliminaries

Let (Ω,F , (Ft), P ) be a stochastic basis satisfying the usual conditions and the
processes discussed in the following are (Ft)-adapted. Further the natural filtration
of a process is understood as the P -completion of the filtration generated by this
process. Let WH = {WH

t , t ≥ 0} be a normalized fractional Brownian motion
with Hurst parameter H ∈ (0, 1), that is, a Gaussian process with continuous
sample paths such that WH

0 = 0, E(WH
t ) = 0 and

E(WH
s WH

t ) =
1

2
[s2H + t2H − |s− t|2H ], t ≥ 0, s ≥ 0. (2.1)

Let us consider a stochastic process Y = {Yt, t ≥ 0} defined by the stochastic
integral equation

Yt =

∫ t

0

C(s)ds+

∫ t

0

B(s)dWH
s , t ≥ 0 (2.2)

where C = {C(t), t ≥ 0} is an (Ft)-adapted process and B(t) is a non-vanishing
non-random function. For convenience we write the above integral equation in the
form of a stochastic differential equation

dYt = C(t)dt+B(t)dWH
t , t ≥ 0;Y0 = 0 (2.3)
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driven by the fractional Brownian motion WH . The integral∫ t

0

B(s)dWH
s (2.4)

is not a stochastic integral in the Itô sense but one can define the integral of a
deterministic function with respect to a fractional Brownian motion in a natural
sense (cf. Norros et al. (1999), Alos et al. (2001)). Even though the process Y is
not a semimartingale, one can associate a semimartingale Z = {Zt, t ≥ 0} which
is called a fundamental semimartingale such that the natural filtration (Zt) of the
process Z coincides with the natural filtration (Yt)of the process Y (Kleptsyna et
al. (2000a)). Define, for 0 < s < t,

kH = 2H Γ(
3

2
−H) Γ(H +

1

2
), (2.5)

κH(t, s) = k−1
H s

1
2−H(t− s)

1
2−H , (2.6)

λH =
2H Γ(3− 2H)Γ(H + 1

2 )

Γ(32 −H)
, (2.7)

wH
t = λ−1

H t2−2H , (2.8)

and

MH
t =

∫ t

0

κH(t, s)dWH
s , t ≥ 0. (2.9)

The process MH is a Gaussian martingale, called the fundamental martingale (cf.
Norros et al. (1999)) and its quadratic variation < MH

t >= wH
t . Furthermore the

natural filtration of the martingale MH coincides with the natural filtration of the
fBm WH . In fact the stochastic integral∫ t

0

B(s)dWH
s (2.10)

can be represented in terms of the stochastic integral with respect to the martingale
MH . For a measurable function f on [0, T ], let

Kf
H(t, s) = −2H

d

ds

∫ t

s

f(r)rH− 1
2 (r − s)H− 1

2 dr, 0 ≤ s ≤ t (2.11)

when the derivative exists in the sense of absolute continuity with respect to the
Lebesgue measure (see Samko et al. (1993) for sufficient conditions). The following
result is due to Kleptsyna et al. (2000a).

Theorem 2.1. Let MH be the fundamental martingale associated with the frac-
tional Brownian motion WH defined by (2.9). Then∫ t

0

f(s)dWH
s =

∫ t

0

Kf
H(t, s)dMH

s , t ∈ [0, T ] (2.12)
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P -a.s. whenever both sides are well defined.

Suppose the sample paths of the process {C(t)
B(t) , t ≥ 0} are smooth enough (see

Samko et al. (1993)) so that the process

QH(t) =
d

dwH
t

∫ t

0

κH(t, s)
C(s)

B(s)
ds, t ∈ [0, T ] (2.13)

is well-defined where the functions wH and kH(., .) are as defined in (2.8) and (2.6)
respectively and the derivative is understood in the sense of absolute continuity.
The following theorem due to Kleptsyna et al. (2000a) associates a fundamental
semimartingale Z associated with the process Y such that the natural filtration
(Zt) of Z coincides with the natural filtration (Yt) of Y.

Theorem 2.2. Suppose the sample paths of the process QH defined by (2.13)
belong P -a.s to L2([0, T ], dwH) where wH is as defined by (2.8). Let the process
Z = (Zt, t ∈ [0, T ]) be defined by

Zt =

∫ t

0

κH(t, s)B−1(s)dYs (2.14)

where the function κH(t, s) is as defined in (2.6). Then the following results hold:

(i) The process Z is a semimartingale with the decomposition

Zt =

∫ t

0

QH(s)dwH
s +MH

t (2.15)

where MH is the fundamental martingale defined by (2.9),

(ii) the process Y admits the representation

Yt =

∫ t

0

KB
H(t, s)dZs (2.16)

where the function KB
H is as defined in (2.11), and

(iii) the natural filtrations (Zt) and (Yt) coincide.

Kleptsyna et al. (2000a) derived the following Girsanov-type formula as a
consequence of the Theorem 2.2.

Theorem 2.3. Suppose the assumptions of Theorem 2.2 hold. Define

ΛH(T ) = exp{−
∫ T

0

QH(t)dMH
t − 1

2

∫ t

0

Q2
H(t)dwH

t }. (2.17)

Suppose that E(ΛH(T )) = 1. Then the measure P ∗ = ΛH(T )P is a probability
measure and the probability measure of the process Y under P ∗ is the same as that
of the process V defined by

Vt =

∫ t

0

B(s)dWH
s , 0 ≤ t ≤ T (2.18)
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under the probability measure P.

3. Signal and Observation

Let us consider the model

dXt = θXtdt+ ϵ dV H
t , X0 = x0 ̸= 0, 0 ≤ t ≤ T, (3.1)

dYt = ft(τ)Xtdt+ ϵ dWt, Y0 = y0, 0 ≤ t ≤ T

where {V H
t (t), 0 ≤ t ≤ T} is the standard fractional Brownian motions with Hurst

parameter H ∈
[
1

2
, 1

]
and {Wt, 0 ≤ t ≤ T} is the standard Brownian motion

independent of each other. Let ft(τ) = h if t ∈ [0, τ ] and ft(τ) = g if t ∈ (τ, T ],
with h and g are known constants with h ̸= g. Here τ is the change point and
θ is called the drift parameter. We assume that the process {Yt, 0 ≤ t ≤ T} is
observable but the state {Xt, 0 ≤ t ≤ T} of the system is unobservable. The
problem is to estimate the drift parameter θ and the change point τ based on
the observation Y = {Yt, 0 ≤ t ≤ T} and study the asymptotic properties as
ϵ → 0. The system (3.1) has a unique solution (X,Y ) which is a Gaussian process.
Suppose that we observe the process Y alone but would like to have information
about the process X at time t. This problem is known as filtering the signal X
at time t from the observation of Y up to time t. The solution to this problem
is the conditional expectation of Xt given the σ-algebra generated by the process
{Y (s), 0 ≤ s ≤ t}. Since the processes (X,Y ) is jointly Gaussian, the conditional
expectation of Xt given {Y (s), 0 ≤ s ≤ t} is linear function of the observation
{Y (s), 0 ≤ s ≤ t}. It is also the optimal filter in the sense of minimizing the
mean square error. The problem of finding the optimal filter reduces to finding
the conditional mean πt(θ, τ,X) = Eθ,τ (Xt|Ys, 0 ≤ s ≤ t). This problem leads
to Kalman-Bucy filter if H = 1

2 . Le Breton (1998) investigated this problem for
a simple linear model driven by a fractional Brownian motion. Kleptsyna and
Le Breton (2002) studied the problem of estimation for the fractional Ornstein-
Uhlenbeck process. For optimal filtering for more general fractional stochastic
systems, see Kleptsyna , Kloden and Ahn(1998). As ϵ → 0, the processes converge
to the non-random functions

xt = x0e
θt, 0 ≤ t ≤ T

and

yt(τ) =

∫ t

0

fs(τ)xsds, 0 ≤ t ≤ t.

Let us consider the transformed process

Zt =

∫ t

0

κH(t, s)dXs, 0 ≤ t ≤ T, (3.2)

Qτ (t) =
d

dwH
t

∫ t

0

κH(t, s)fs(τ)Xsds, 0 ≤ t ≤ T, (3.3)
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and define the function

Q̄τ (t) =
d

dwH
t

∫ t

0

κH(t, s)fs(τ)xsds

where

xt = x0e
θt, 0 ≤ t ≤ T. (3.4)

Let

MH
t =

∫ t

0

κH(t, s)dV H
s , t ≥ 0. (3.5)

The process MH is a Gaussian fundamental martingale associated with the the
fBm V H with the quadratic variation wH given by (2.8). Furthermore the semi-
martingale Z can be called the signal fundamental semimartingale (cf. Kleptsyna
and Le Breton (2002)). The natural filtrations of the processes X and Z coincide.
In addition, it follows by Theorem 2.2 that

Xt = x0 +

∫ t

0

KH(t, s)dZs, 0 ≤ t ≤ T

where KH(t, s) is defined by the equation (4.1) given below.

Suppose that {ηt, 0 ≤ t ≤ T} is a random process adopted to the filtration
(Ft) such that Eθ,τ (|ηt|) < ∞ on the underlying probability space (Ω,F , P ). Let
πt(θ, τ, η) denote the conditional expectation of ηt given the observation {Ys, 0 ≤
s ≤ t}. Let {Yt} denote the filtration generated by the process Y . Let

ϵ νt = Yt − θ

∫ t

0

πs(θ, τ,X)ds, 0 ≤ t ≤ T

where πt(θ, τ,X) = Eθ,τ [X(t)|Ys, 0 ≤ s ≤ t]. The process ν = {νt, 0 ≤ t ≤ T}
is called the innovation type process. Kleptsyna et al. (2000a) proved that the
process {νt} is a continuous Gaussian (Yt)-martingale with the quadratic variation
function t and hence a Wiener process. Furthermore, if ζ = {ζt, 0 ≤ t ≤ T} is
a square integrable (Yt)–martingale, ζ0 = 0, then there exists a (Yt)- adapted
process α = {αt, 0 ≤ t ≤ T} such that

Eθ,τ (

∫ T

0

α2
tdt) < ∞

and

ζt =

∫ t

0

αsdνs, 0 ≤ t ≤ T.

4. Auxiliary results

Consider the linear system described by (3.1). Define the function

KH(t, s) = H(2H − 1)

∫ t

s

rH− 1
2 (r − s)H− 3

2 dr. (4.1)
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Let

p(t, s) =
d

dwH
t

∫ t

s

κH(t, r)
fr(τ)

ϵ
dr, (4.2)

and let

q(t, s) =
d

dwH
t

∫ t

s

κH(t, r)KH(r, s)
fr(τ)

ϵ
dr. (4.3)

Following the computations given in Kleptsyna et al. (2000b), p.129, for the
processes specified by the system (3.1), it can be checked that that

p(t, s) =
ft(τ)

ϵ

and

q(t, s) = ft(τ)KH(t, s).

Furthermore

Qτ (t) =
ft(τ)

ϵ
Xt, Q̄τ (t) =

ft(τ)

ϵ
xt,

and

πt(θ, τ,Q) =
ft(τ)

ϵ
πt(θ, τ,X).

Applying Lemma 3 of Kleptsyna et al. (2000b), we get the following representa-
tions for the processes X and Q involved in the filtering problem for the system
governed by the equation (3.1):

Xt = x0 +

∫ t

0

Xsds+ ϵ

∫ t

0

KH(t, s)dMH
s , 0 ≤ t ≤ T ;

and

Qτ (t) = p(t, 0)x0 +

∫ t

0

p(t, s)Xsds+ ϵ

∫ t

0

q(t, s)dMH
s , 0 ≤ t ≤ T.

An application of Theorem 4 in Kleptsyna et al. (2000b) to the process X leads
to the equation

πt(θ, τ,X) = x0 +

∫ t

0

πs(θ, τ,X)ds+ ϵ

∫ t

0

c1(t, s)dνs, 0 ≤ t ≤ T. (4.4)

where c1(t, s) is a non-random function and {ν(t), 0 ≤ t ≤ T} is the innovation
process. Another application of Theorem 4 of Kleptsyna et al. (2000b) proves
that

πt(θ, τ,Q) = p(t, 0)x0 +

∫ t

0

p(t, s)πs(θ, τ,X)ds+ ϵ

∫ t

0

c2(t, s)dνs, 0 ≤ t ≤ T (4.5)

where c2(t, s) is a non-random function and {ν(t), 0 ≤ t ≤ T} is the innovation
process

In particular, by considering the special case ϵ = 0 in the equations (4.4) and
(4.5), we obtain the integral equations

πt(θ, τ, x) = x0 +

∫ t

0

πs(θ, τ, x)ds, 0 ≤ t ≤ T
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and

πt(θ, τ, Q̄) = p(t, 0)x0 +

∫ t

0

p(t, s)πs(θ, τ, x)ds, 0 ≤ t ≤ T.

Combining the above equations, it follows that there exist functions ci(t, s), 0 ≤
s ≤ T, i = 1, 2 such that

πt(θ, τ,X)−πt(θ, τ, x) =

∫ t

0

(πs(θ, τ,X)−πs(θ, τ, x))ds+ϵ

∫ t

0

c1(t, s)dνs, 0 ≤ t ≤ T

(4.6)
and

πt(θ, τ,Q)− πt(θ, τ, Q̄) =

∫ t

0

p(t, s)(πs(θ, τ,X)− πs(θ, τ, x))ds (4.7)

+ϵ

∫ t

0

c2(t, s)dνs, 0 ≤ t ≤ T.

Lemma 4.1. Let θv = θ+ϵv and τu = τ+ϵ2u. Under the conditions stated above,
there exist positive constants ct and c1t and c2t such that
(i) sup

0≤s≤t
E|Xs − xs|2 ≤ ctϵ

2,

(ii) sup
0≤s≤t

Eθ,τ |πs(θv, τu, X)− πs(θv, τu, x)|2 ≤ c1tϵ
2t,

(iii) sup
0≤s≤t

Eθ,τ [πs(θv, τu, Q)− πs(θv, τu, Q̄)]2 ≤ c2tϵ
2t2.

The bounds in (ii) and (iii) hold uniformly for (θv, τu) in a neighbourhood of (θ, τ).

Proof. An application of the Grownwall’s inequality implies (i) (cf. Prakasa Rao
(2010), p.131. Another application of Grownwall’s inequality using the equation
(4.6) shows that

|πs(θv, τu, X)− πs(θv, τu, x)| ≤ c1tϵ sup
0≤s≤t

|νs|, 0 ≤ s ≤ t

and hence

sup
0≤s≤t

Eθ,τ |πs(θv, τu, X)− πs(θv, τu, x)|2 ≤ c1tϵ
2t.

Again, as a consequence of the equation (4.7), applying Cauchy-Schwartz inequal-
ity, it follows that

|πt(θv, τu, Q)− πt(θv, τu, Q̄)|2 ≤ 2

∫ t

0

p2(t, s)ds

∫ t

0

[πs(θv, τu, X)− πs(θv, τu, x)]
2ds

+2ϵ2[(

∫ t

0

c2(t, s)dνs)]
2.
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Hence

Eθ,τ

[
πt(θv, τu, Q)− πt(θv, τu, Q̄)

]2 ≤ 2

∫ t

0

p2(t, s)ds

∫ t

0

Eθ,τ [πs(θv, τu, X)− πs(θv, τu, x)]
2ds

+2ϵ2Eθ,τ [(

∫ t

0

c2(t, s)dνs)]
2

≤ 2

∫ t

0

p2(t, s)ds.c1tϵ
2t2

+2ϵ2
∫ t

0

c22(t, s)dt

≤ 2tp2(t, 0)c1tϵ
2t2 + 2ϵ2c2tt.

Hence

sup
0≤s≤t

Eθ,τ |πs(θv, τu, Q)− πs(θv, τu, Q̄)|2 ≤ c3tϵ
2t2.

5. Main Results

Fix θ, τ and define θv = θ + ϵv and τu = τ + ϵ2u. Suppose u, v > 0. Let

∆t = ft(τu)πt(θv, τu, X)− ft(τ)πt(θ, τ,X)

∆t = ft(τu)πt(θv, τu, x)− ft(τ)πt(θ, τ, x)

We now consider the problem of estimation of the change point τ and the drift
parameter θ based on the observation {Yt, 0 ≤ t ≤ T} by the method of maximum
likelihood. Let Pθ,τ be the probability measure generated by the process Y on the
space C[0, T ] associated with the uniform topology when τ is the change point
and θ is the drift parameter. Let θ0 be the true drift parameter and τ0 be the true

change point. The maximum likelihood estimator (θ̂ϵ, τ̂ϵ), based on the observation
{Yt, 0 ≤ t ≤ T}, is a random vector at which the likelihood function

dPθ,τ

dPθ0,τ0

is supremum over the interval [t1, t2]×Θ.We assume that there exists a measurable

maximum likelihood estimator (θ̂ϵ, τ̂ϵ). Sufficient conditions for the existence of a
measurable maximum likelihood estimator are given in Prakasa Rao (1987). Note
that

J2
τ = lim

ϵ→0

1

ϵ2u

∫ τ+ϵ2u

τ

(g − h)2x2
tdt = (g − h)2x2

τ

exists. Define

L0(u, v) = uξ − 1

2
u2σ2(θ, τ) + JτW1(v)−

1

2
|v|J2

τ for v ≥ 0, u ∈ R
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where {W1(v), v ≥ 0} is a standard Wiener process and ξ is an independent Gauss-
ian random variable with mean zero and some variance σ2(θ, τ) to be specified
later. Similarly, for v < 0 and u ∈ R, let

L0(u, v) = uξ − 1

2
u2σ2(θ, τ) + JτW2(−v)− 1

2
|v|J2

τ

where {W2(−v), v < 0} is another standard Wiener process. Here W1 and W2 are
independent standard Wiener processes.

We now state the main result.

Theorem 5.1. Let τ denote the true change point and θ be the true drift param-

eter. Let (θ̂ϵ, τ̂ϵ) denote the maximum likelihood estimator of (θ, τ) based on the
observation of the process Y satisfying the linear system defined by (3.1). Then
the normalized random variable

(ϵ−1(θ̂ϵ − θ), ϵ−2(τ̂ϵ − τ))

converges in law, as ϵ → 0, to a random vector whose distribution is the bivariate
distribution of location of the maximum of the process {L0(u, v),−∞ < u, v < ∞}
as defined above.

Before we give a proof of this main result, we prove some related results.

Consider the log-likelihood ratio process

Lϵ(u) = log
dPθv,τu

dPθ,τ

=
1

ϵ

∫ T

0

[ft(τu)πt(θv, τu, X)− ft(τ)πt(θ, τ,X)] dνt

− 1

2ϵ2

∫ T

0

[ft(τu)πt(θv, τu, X)− ft(τ)πt(θ, τ,X)]2dt

=
1

ϵ

∫ T

0

∆tdνt −
1

2ϵ2

∫ T

0

∆2
tdt

for fixed u > 0 and v > 0 such that 0 ≤ τ, τ + ϵ2u ≤ T and θ, θv ∈ Θ. Let C[K]
denote the space of continuous functions defined on a compact set K ⊂ R2.

Theorem 5.2. (Local asymptotic normality) Let K ⊂ R2 be compact. The prob-
ability measure generated by the log-likelihood ratio process {Lϵ(u, v), (u, v) ∈ K}
on C[K] converges weakly to the probability measure generated by the process
{L0(u, v), (u, v) ∈ K} on C[K] associated with the uniform norm topology as
ϵ → 0.

From the general theory of weak convergence of probability measures on C[K],
(cf. Billingsley (1968), Parthasarathy (1967), Prakasa Rao (1987)), in order to
prove Theorem 5.2, it is sufficient to prove that the finite dimensional distributions
of the process {Lϵ(u, v), (u, v) ∈ K} converge weakly to the corresponding finite
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dimensional distributions of the process {L0(u, v), (u, v) ∈ K} and the family of
measures generated by the processes {Lϵ(u, v), (u, v) ∈ K} for different ϵ is tight.

6. Proofs of Theorems 5.1 and 5.2

We now state two lemmas which will be used in the following computations.
For proofs of these lemmas, see Lemmas 5.2 and 5.3 in Mishra and Prakasa Rao
(2014).

Lemma 6.1. Let {Dt, 0 ≤ t ≤ T} be a random process such that

sup
0≤t≤T

E(D4
t ) ≤ γ < ∞.

Then, for 0 ≤ θ2 ≤ θ1 ≤ T,

E([

∫ θ1

θ2

Dtdt]
4) ≤ |θ1 − θ2|3

∫ θ1

θ2

E[D4
t ]dt ≤ γ|θ1 − θ2|4.

The next lemma gives an inequality for the 4-th moment of a stochastic integral
with respect to a martingale.

Lemma 6.2. Let the process {ft, 0 ≤ t ≤ T} be a random process adapted to a
square integrable martingale {Mt,Ft, t ≥ 0} with the quadratic variation < M >t

such that ∫ T

0

E(f4
s )d < M >s< ∞.

Then

E((

∫ T

0

ftdMt)
4) ≤ 36 < M >T

∫ T

0

E(f4
t )d < M >t .

and, in general, for 0 ≤ θ2 ≤ θ1 ≤ T,

E[(

∫ θ1

θ2

ftdMt)
4] ≤ 36(< M >θ1 − < M >θ2)

∫ θ1

θ2

E[f4
t ]d < M >t .

Lemma 6.3. There exists a constant c > 0 possibly depending on H and T such
that

sup
0≤t1≤τ≤t2≤T,θ∈Θ

sup
0≤t≤T

Eθ,τ [∆t − ∆̄t]
2 ≤ cϵ2. (6.1)

Proof. Note that

sup
0≤t≤T

Eθ,τ [∆t − ∆̄t]
2 ≤ 2 sup

0≤t≤T
Eθ,τ [ft(τu)πt(θv, τu, X))− ft(τu)πt(θv, τu, x)]

2

+2 sup
0≤t≤T

Eθτ [ft(τ)πt(θ, τ,X))− ft(τ)πt(θ, τ, x)]
2

≤ C1tϵ
2T 2 ≤ Cϵ2

by Lemma 4.1.

Following the arguments in Kutoyants (1994) pp.168-169, it can be shown that

ϵ−2Eθ,τ [||ft(τu)π(θv, τu, X)− ft(τ)π(θ, τ,X)||2] → u2σ2(θ, τ) + vJ2
τ
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as ϵ → 0 where

σ2(θ, τ) = g2
∫ τ

0

x2
tdt+ h2

∫ T

τ

x2
tdt. (6.2)

Lemma 6.4. The finite-dimensional distributions of the process {Lϵ(u, v), (u, v) ∈
K} converge to the corresponding finite dimensional distributions of the process
{L0(u, v), (u, v) ∈ K} as ϵ → 0.

Proof. We will first investigate the convergence of the marginal distributions of the
process Lϵ(u, v) as ϵ → 0. The convergence of other classes of finite-dimensional
distributions follow from the Cramer-Wold device. Note that

Lϵ(u, v) =
1

ϵ

∫ T

0

∆tdνt −
1

2ϵ2

∫ T

0

∆2
tdt (6.3)

Consider

1

ϵ

∫ T

0

∆tdνt =
1

ϵ

∫ τ

0

∆tdνt +
1

ϵ

∫ τ+ϵ2u

τ

∆tdνt +
1

ϵ

∫ T

τ+ϵ2u

∆tdνt

= I1 + I2 + I3 (say)

Note that

I1 =
1

ϵ

∫ τ

0

∆tdνt =
1

ϵ

∫ τ

0

(∆t −∆t)dνt +
1

ϵ

∫ τ

0

∆tdνt.

The first integral converges to zero in probability (by Lemma 6.3) and the second
integral is

1

ϵ

∫ τ

0

∆̄tdνt = vh

∫ τ

0

xtdνt + op(1).

Similarly

I3 =
1

ϵ

∫ T

τ+ϵ2u

∆tdνt = vg

∫ T

τ

xtdνt + op(1).

Observe that

I2 =
1

ϵ

∫ τ+ϵ2u

τ

∆tdνt

which is Gaussian with mean zero and variance

1

ϵ2

∫ τ+ϵ2u

τ

Eθ,τ (∆
2
t )dt = J2

τ + o(1).

Let us now consider

1

2ϵ2

∫ T

0

∆2
tdt = − 1

2ϵ2

{∫ τ

0

∆2
tdt+

∫ T

τ+ϵ2u

∆2
tdt+

∫ τ+ϵ2u

τ

∆2
tdt

}
.
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Now

− 1

2ϵ2

∫ τ

0

∆2
tdt = − 1

2ϵ2

∫ τ

0

{∆t − ϵvhxt + ϵvhxt}2 dt

= − 1

2ϵ2
(

∫ τ

0

{∆t − ϵvh xt}2 + {ϵvh xt}2 + 2(∆t − ϵvh xt)(ϵvh xt)dt)

= −1

2

∫ τ

0

(vh xt)
2dt+ op(1).

From the above computations,we observe that,as ϵ → 0,

1

ϵ2

∫ τ

0

∆2
tdt = v2h2

∫ τ

0

x2
tdt+ op(1)

and similarly

1

ϵ2

∫ T

τ+ϵ2u

∆2
tdt = v2g2

∫ T

τ

x2
tdt+ op(1).

Furthermore

1

ϵ2

∫ τ+ϵ2u

τ

∆2
tdt = (gxt − hxt)

2u+ op(1) = uJ2
τ + op(1).

As a consequence of the above s, we get that the random variable L0(u, v) is
asymptotically Gaussian with the mean

−1

2
v2σ2(θ, τ)− 1

2
J2
τ u

and the variance

v2σ2(θ, τ) + J2
τ u

for u > 0 and v ∈ R. Similar results hold for u < 0 and v ∈ R.

We have proved the convergence of the univariate distributions of the process
{Lϵ(u, v), (u, v) ∈ K}, as ϵ → 0, after proper scaling of the process. Convergence of
all the other finite-dimensional distributions of the process {Lϵ(u, v), (u, v) ∈ K}
as ϵ → 0, after proper scaling, follows by an application of the Cramer-Wold device.

Lemma 6.5. Let Γϵ(u, v) = exp{Lϵ(u, v)}. Then, for any compact set K ⊂ R2

there exist a constant C > 0 such that

sup
(ui,vi)∈K,i=1,2

Eθ,τ

∣∣∣Γ 1
4
ϵ (u2, v2)− Γ

1
4
ϵ (u1, v1)

∣∣∣4 ≤ C[(u1 − u2)
2 + (v1 − v2)

4].

Proof. Without loss of generality, let u1 > u2 and v1 > v2, define

δt = g[πt(θ + ϵv1, τ + ϵ2u1, X)− πt(θ + ϵv2, τ + ϵ2u2, X)], θ ∈ Θ

and

δ̄t = g
[
πt(θ + ϵv1, τ + ϵ2u1, x)− πt(θ + ϵv2, τ + ϵ2u2, x)

]
,
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for θ, θvi ∈ Θ, i = 1, 2 and 0 ≤ τu1 ≤ t ≤ τu2 ≤ T. Let τ + ϵ2u1 = β1, τ + ϵ2u2 = β2

and θ+ ϵv1 = s1 and θ+ ϵv2 = s2. Since the random variable δt is Gaussian, there
exists a ϵ0 > 0 of τ such that

sup
0≤t≤T,0<ϵ<ϵ0

Eθ,τ [|δt|8] < ∞.

Let

Rt = exp[
1

4ϵ

∫ t

0

δsdνs −
1

8ϵ2

∫ t

0

δ2sds], R0 = 1.

Note that the process Rt is the process(
dPβ1,s1

dPβ2,s2

(X)

) 1
4

and, by the Itô formula, we have

dRt = − 3

(32)ϵ2
δ2tRtdt+

1

4ϵ
δtRtdνt.

Hence

RT = 1− 3

(32) ϵ2

∫ T

0

δ2tRtdt+
1

4 ϵ

∫ T

0

δtRtdνt.

Note that

Eθ,τ

∣∣∣Γ 1
4
ϵ (u2, v2)− Γ

1
4
ϵ (u1, v1)

∣∣∣4
= Eθ,τ (

dPβ2,s2

dPθ,τ
|1−RT |4) = Eβ2,s2(|1−RT |4)

≤ C
1

ϵ8
Eβ2,s2

∣∣∣∣∣
∫ T

0

δ2tRtdt

∣∣∣∣∣
4

+ C
1

ϵ4
Eβ2,s2

∣∣∣∣∣
∫ T

0

δtRtdνt

∣∣∣∣∣
4

where C is an absolute constant. In order to get the bounds for the expectations
of the integrals in the above inequality, we now use the Lemmas 6.3 and 6.4. Let
us now estimate the term

Eβ2,s2

∣∣∣∣∣
∫ T

0

δ2tRtdt

∣∣∣∣∣
4

.

Suppose u = u1 − u2 > 0, and v1 − v2 > 0. Then

Eβ2,s2

∣∣∣∣∣
∫ T

0

δ2tRtdt

∣∣∣∣∣
4

≤ CEβ2,s2

∣∣∣∣∣
∫ τ

0

δ2tRtdt+

∫ T

τ+uϵ2
δ2tRtdt

∣∣∣∣∣
4

+ CEβ2,s2

∣∣∣∣∣
∫ τ+uϵ2

τ

δ2tRtdt

∣∣∣∣∣
4

for some absolute constant C > 0.
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Note that

I1 ≡ Eβ2,s2

∣∣∣∣∣
∫ τ+uϵ2

τ

δ2tRtdt

∣∣∣∣∣
4

≤ cu3ϵ6
∫ τ+ϵ2u

τ

Eβ2,s2

∣∣δ2tRt

∣∣4 dt.
Now

sup
0≤t≤T

Eβ2,s2

∣∣δ2tRt

∣∣4 = sup
0≤t≤T

Eβ1,s2(δ
s
t ) < ∞

since

Rt = [
dPβ1,s2

dPβ2,s2

(X)]
1
4 .

It follows that

I1 = Eβ2,s2

∣∣∣∣∣
∫ τ+uϵ2

τ

δ2tRtdt

∣∣∣∣∣
4

≤ cu3ϵ6(uϵ2) = c(u1 − u2)
4ϵ8.

Let us now estimate the term

I2 ≡ Eβ2,s2 |
∫ τ

0

|δ2tRtdt|4.

Observe that

I2 = Eβ2,s2

∣∣∣∣∫ τ

0

δ2ϵRtdt

∣∣∣∣4
≤ Cτ3

∫ τ

0

Eβ2,s2

∣∣δ8tR4
t

∣∣ dt
= cτ3

∫ τ

0

Eβ1,s1 |δ8t |dt

= cτ4 sup
θ,τ,t

Eθ,τ |δ8t |

≤ cτ4ϵ8(v1 − v2)
8

≤ cϵ8(v1 − v2)
8.

Let us now consider the estimation of the form

Eβ2,s2

∣∣∣∣∣
∫ T

0

δtRtdνt

∣∣∣∣∣
4

.
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Note that

Eβ2,s2

∣∣∣∣∣
∫ T

0

δtRtdνt

∣∣∣∣∣
4

≤ CEβ2,s2

∣∣∣∣∣
∫ τ

0

δtRtdνt +

∫ T

τ

δtRtdνt

∣∣∣∣∣
4


+CEβ2,s2

∣∣∣∣∣
∫ τ+ϵ2v

τ

δtRtdνt

∣∣∣∣∣
4
 .

Let

I ′1 = Eβ2,s2

∣∣∣∣∣
∫ τ+uϵ2

τ

δ2tRtdνt

∣∣∣∣∣
4

≤ C(τ + ϵ2u− τ)

∫ τ+uϵ2

τ

Eβ2,s2 |δtRt|4 dt

≤ cϵ2u

∫ τ+uϵ2

τ

Eβ1,s1 |δt|4dt

≤ C(u1 − u2)
2ϵ4.

Similarly

I ′2 = Eβ2,s2

∣∣∣∣∫ τ

0

δ2tRtdνt

∣∣∣∣4
≤ cτ

∫ τ

0

Eβ2,s2 |δ4Rt|4 dt

≤ cτ

∫ τ

0

Eβ1,s1 |δt|4dt

≤ C(v1 − v2)
4ϵ4.

Let us now consider the estimation of the term

Eβ2,s2

∣∣∣∣∣
∫ T

τ+ϵ2u

δ2tRtdt

∣∣∣∣∣
4

≤ CEβ2,s2

∫ T

τ+ϵ2u

|δ8tRt|dt

≤ C sup
θ,τ,t

Eθ,τ |δt|8

≤ Cϵ8(v1 − v2)
8.

Combining the above estimates, we obtain that

sup
(u,v)∈K

[
|v1 − v2|4 + |u1 − u2|2

]−1
Eθ,τ

∣∣∣Γ 1
4
ϵ (u1, v1)− Γ

1
4
ϵ (u2, v2)

∣∣∣4 ≤ c < ∞

which proves the tightness from the results in Prakasa Rao (1975) or Neuhaus
(1971).

Proof of Theorem 5.2: As a consequence of Lemma 6.5, it follows that the

family of probability measures generated by the processes {Γ
1
4
ϵ (u, v), (u, v) ∈ K}
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on C[K] with uniform topology is tight from the results in Billingsley (1968) (cf.
Prakasa Rao (1987)) and hence the family of probability measures generated by
the processes {Lϵ(u, v), (u, v) ∈ K} on C[K] is tight.

Lemmas 6.1 and 6.5 together imply that that the family of probability measures
generated by the processes {Lϵ(u, v), (u, v) ∈ K} on C[K] converge weakly to the
probability measure generated by the processes {L0(u, v), (u, v) ∈ K} on C[K]
from the general theory of weak convergence of probability measures on complete
separable metric spaces (cf. Billingsley (1968), Parthasarathy (1967), Prakasa
Rao (1987) and Ibragimov and Has’minskii (1981)). This completes the proof of
Theorem 5.2.

It remains to show that the maximum likelihood estimator (θ̂ϵ, τ̂ϵ) will lie in a
compact set K with probability tending to one as ϵ → 0 after suitable normaliza-
tions of the components.

Sinai (1997) studied the asymptotic behaviour of the distribution of the maxi-
mum of a fractional Brownian motion. For an overview of the maximal inequalities
for fractional Brownian motion, see Prakasa Rao (2014). The following maximal
inequality is proved in Lemma 5.6 in Mishra and Prakasa Rao (2014) using the
Slepian’s lemma (cf. Leadbetter et al. (1983) and Matsui and Shieh (2009)). We
will use it in the sequel.

Lemma 6.6. Let WH be a fractional Brownian motion with Hurst index H. For
any λ > 0,

E[exp{λ max
0≤t≤T

|WH
t |}] ≤ 1 + λ

√
2πT 2H exp{λ

2T 2H

2
}.

We now apply Lemma 6.6 to get the following result.

Lemma 6.7. Let Γϵ(u, v) = exp{Lϵ(u, v)}, u, v ∈ R. Then, for any compact set
K ⊂ R2 and for any 0 < p < 1, there exists a positive constant C such that

sup
(u,v)∈K

Eθ,τ [(Γϵ(u, v))
p] ≤ e−C g(u,v) (6.4)

where g(u, v) = k1|u|2 + k2|v|2 for some k1 > 0 and k2 > 0.

Proof. Now, for any 0 < p < 1, we will now estimate Eθ,τ (Γϵ(u, v))
p. For conve-

nience, let u, v > 0 and let

F1 ≡
∫ T

0

∆tdνt

and

F2 ≡
∫ T

0

∆̄2
tdt.
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Let q be such that p2 < q < p. Then

Eθ,τ [(Γϵ(u, v))
p] = Eθ,τ [exp{

p

ϵ
F1 −

p

2ϵ2
F2}]

= Eθ,τ [exp{
p

ϵ
F1 −

q

2ϵ2
F2 −

(p− q)

2ϵ2
F2}].

Let

G1 = exp{− (p− q)

2ϵ2
F2}

and

G2 = exp{p
ϵ
F1 −

q

2ϵ2
F2}.

Then

Eθ,τ [(Γϵ(u, v))
p] = Eθ,τ [G1G2]

≤ (Eθ,τ [G
p1

1 ])1/p1(Eθ,τ [G
p2

2 ])1/p2

by the Holder inequality for any p1 and p2 such that p2 > 1 and 1
p1

+ 1
p2

= 1.

Choose p2 = q
p2 > 1. Then p1 = q

q−p2 . Observe that

Eθ,τ [G
p2

2 ] = Eθ,τ [exp{p2(
p

ϵ
F1 −

q

2ϵ2
F2)}]

= Eθ,τ [exp{
q

p2
(
p

ϵ
F1 −

q

2ϵ2
F2)}]

= Eθ,τ [exp{
1

ϵ

q

p
F1 −

1

2ϵ2
q2

p2
F2}].

The random variable, under the expectation sign in the last line, is the Radon-
Nikodym derivative of two probability measures which are absolutely continuous
with respect to each other by the Girsanov’s theorem for martingales. Hence the
expectation is equal to one. Hence

Eθ,τ [(Γϵ(u, v))
p] ≤ (Eθ,τ [exp{−

p1(p− q)

2ϵ2
F2}])1/p1

= (Eθ,τ [exp{−γϵ−2F2}])1/p1 .

where γ = q(p−q)
2(q−p2) > 0. Let us now estimate Eθ,τ [e

−γϵ−2F2 ]. Applying the inequal-

ity

a2 ≥ b2 − 2|b(a− b)|,
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it follows that

Eθ,τ [e
−γϵ−2F2 ]

≤ exp{−γϵ−2

∫ T

0

∆̄2
tdt} ×

×Eθ,τ [exp{2γϵ−2(

∫ T

0

(ft(τu)πt(θv, τu, X)− ft(τu)πt(θv, τu, , x)|+

+|ft(τ)πt(θ, τ,X)− ft(τ)πt(θ, τ, x)|)|ft(τu)πt(θv, τu, x)− ft(τ)πt(θ, τ, x)|dt}].

We now get an upper bound on the term under the expectation sign on the right
side of the above inequality. Observe that there exists a a constant c > 0, such
that, ∫ T

0

[ft(τ)πt(θ, τ,X)− ft(τ)πt(θ, τ, x)]
2 dt ≤ cϵ2T

for some constant C > 0 possibly depending on T. Fix ϵ0 > 0. Let 0 < ϵ < ϵ0 and
D(t1, t2, ϵ) = {(θ, v; τ, u) : t1 ≤ τ, τu ≤ t2 and θ, θv ∈ Θ}. Let

J1(t) = ft(τu)πt(θv, τu, x)− ft(τ)πt(θ, τ, x),

J2(t) = ft(τu)πt(θv, τu, X)− ft(τ)πt(θv, τu, , x),

and

J3(t) = ft(τ)πt(θ, τ,X)− ft(τ)πt(θ, τ, x).

An application of the Cauchy-Schwartz inequality implies that

sup
D(t1,t2,ϵ)

[

∫ T

0

|J1(t)||J2(t)|dt]2 ≤ cϵ4T 2 sup
0≤t≤T

|νt|2.

Hence

sup
D(t1,t2,ϵ)

[

∫ T

0

|J1(t)J2(t)|dt] ≤ cϵ2 sup
0≤t≤T

|νt|.

Therefore

sup
D(t1,t2,ϵ),0<ϵ<ϵ0

Eθ,τ [exp(2γϵ
−2(

∫ T

0

|J2(t)|+ |J3(t)|)|J1(t)|]dt)]

≤ Eθ,τ [exp(cγ[g(u, v)]
1/2 sup

0≤t≤T
|νt|)]

≤ 1 + γc[g(u, v)]1/2
√
2πT exp

(
Cγ2Tg(u, v)

2

)
by Lemma 6.6 . Applying arguments similar to those in Lemma 2.4 in Kutoyants
(1994), we get that

sup
(u,v)∈K,0<ϵ<ϵ0

Eθ,τ [(Γϵ(u, v))
p] ≤ e−C g(u,v)
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for some positive constant C > 0 depending on T,Θ and τ. An application of

Lemma 6.7 proved earlier shows that the maximum likelihood estimator (θ̂ϵ, τ̂ϵ)
will lie in a compact set K with probability tending to one as ϵ → 0 from Theorem
5.1 in Chapter 1, p.42 of Ibragimov and Has’minskii (1981).

Proof of Theorem 5.1: Let C[K] denote the family of continuous functions
defined on a compact set K in R. In view of Theorem 5.2, it follows that the fam-
ily of probability measures generated by the random processes {Lϵ(u, v), (u, v) ∈
K}, ϵ > 0 on C[K] converge weakly to the probability measure generated by the
random process {L0(u, v), (u, v) ∈ K} on C[K] as ϵ → 0. Let (ûϵ, v̂ϵ) denote a
point at which the random field {Lϵ(u, v), (u, v) ∈ K} is maximum. Let (u0, v0)
denote the location of the maxima of the process {L0(u, v), (u, v) ∈ K} on C[K].
The location (u0, v0) of the maxima is unique almost surely by the property of
Gaussian random fields. Since the random fields {Lϵ(u, v), (u, v) ∈ K}, ϵ > 0
on C[K] converge weakly to the random field {L0(u, v), (u, v) ∈ K} on C[K] as
ϵ → 0, by the continuous mapping theorem, it follows that the distribution of

(τ̂ϵ, θ̂ϵ)) appropriately normalized converges in law to the distribution of (u0, v0)
by the continuous mapping theorem (cf. Billingsley (1968)). Lemma 6.7 implies
that the random variable (ûϵ, v̂ϵ) = (ϵ−2(τ̂ϵ − τ), ϵ−1(θϵ − θ)) ∈ K with proba-
bility tending to one as ϵ → 0. Applying arguments similar to those in Theorem
10.1 in Chapter II, p.103 of Ibragimov and Has’minskii (1981) (cf. Prakasa Rao
(1968)), we obtain the following result. Let θ, τ be the true parameter. As a
consequence of the arguments and the discussion given above, it follows that the

random variable (ϵ−2(τ̂ϵ − τ), ϵ−1(θ̂ϵ − θ)) converges in law to the distribution of
the random variable (u0, v0) which is the location of the maximum of the random
field {L0(u, v), (u, v) ∈ R}, as ϵ → 0.
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