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Abstract : We consider the problem of optimal estimation of the vector parameter θ of the

drift term in a sub-fractional Brownian motion. We obtain the maximum likelihood estimator

as well as Bayesian estimator when the prior distribution is Gaussian.
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1 Introduction

Fractional Brownian motion WH = {WH
t , t ≥ 0} has been used for modelling stochastic

phenomena with long-range dependence. It is a centered Gaussian process with the covariance

function

RH(s, t) =
1

2
(t2H + s2H − |t− s|2H)

where 0 < H < 1 and the constant H is called the Hurst index. The case H = 1/2

corresponds to the Brownian motion. FBm is the only Gaussian process which is self-similar

and has stationary increments. For properties of fBm, see Samorodnitsky and Taqqu (1994),

Mishura (2008) and Prakasa Rao (2010). Bojdecki et al. (2004) introduced a centered

Gaussian process ζH = {ζHt , t ≥ 0} called sub-fractional Brownian motion (sub-fBm) with

the covariance function

CH(s, t) = s2H + t2H − 1

2
[(s+ t)2H + |s− t|2H ]

where 0 < H < 1. The increments of this process are not stationary and are more weakly

correlated on non-overlapping intervals than those of a fBm. Tudor (2009) introduced a

Wiener integral with respect to a sub-fBm. Tudor ( 2007 a,b, 2008, 2009) discussed some

properties related to sub-fBm and its corresponding stochastic calculus. By using a funda-

mental martingale associated to sub-fBm, a Girsanov type theorem is obtained. Diedhiou
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et al. (2011) investigated parametric estimation for a stochastic differential equation (SDE)

driven by a sub-fBm. Mendy (2013) studied parameter estimation for the sub-fractional

Ornstein-Uhlenbeck process defined by the stochastic differential equation

dXt = θXtdt+ dζHt , t ≥ 0

where H > 1
2 . Kuang and Xie (2013) studied properties of maximum likelihood estimator for

sub-fBm through approximation by a random walk. Shen and Yan (2014) discussed estima-

tion for the drift of a sub-fBm. Kuang and Liu (2016) discussed about the L2-consistency and

strong consistency of the maximum likelihood estimators for the sub-fBm with drift based on

discrete observations. Yan et al. (2011) obtained the Ito’s formula for sub-fractional Brow-

nian motion with Hurst index H > 1
2 . For results on some maximal and integral inequalities

for sub-fractional Brownian motion, see Prakasa Rao (2016).

For a discussion on methods of statistical inference for estimation of parameters for pro-

cesses driven by a fractional Brownian motion, see Prakasa Rao (2010).

2 Preliminaries

Bojdecki et al. (2004) noted that the process

1√
2
[WH

t +WH
−t], t ≥ 0,

where {WH
t ,−∞ < t <∞} is a fBm, is a centered Gaussian process with the same covariance

function as that of a sub-fBm. This proves the existence of a sub-fBm. They proved the

following result concerning properties of a sub-fBm.

Theorem 2.1: Let ζH = {ζHt , t ≥ 0} be a sub-fBm defined on a filtered probability space

(Ω,F , (Ft, t ≥ 0), P ).. Then the following properties hold.

(i) The process ζH is self-similar, that is, for every a > 0,

{ζHat , t ≥ 0} ∆
= {aHζHt , t ≥ 0}

in the sense that the processes, on both the sides of the equality sign, have the same finite

dimensional distributions.

(ii) The process ζH is not Markov and it is not a semi-martingale.

(iii) For all s, t ≥ 0, the covariance function CH(s, t) of the process ζH is positive for all

s > 0, t > 0. Furthermore
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CH(s, t) > RH(s, t) if H <
1

2

and

CH(s, t) < RH(s, t) if H >
1

2
.

(iv) Let βH = 2− 22H−1. For all s ≥ 0, t ≥ 0,

βH(t− s)2H ≤ E[ζHt − ζHs ]2 ≤ (t− s)2H , if H >
1

2

and

(t− s)2H ≤ E[ζHt − ζHs ]2 ≤ βH(t− s)2H , if H <
1

2

and the constants in the above inequalities are sharp.

(v) The process ζH has continuous sample paths almost surely and, for each 0 < ϵ < H

and T > 0, there exists a random variable Kϵ,T such that

|ζHt − ζHs | ≤ Kϵ,T |t− s|H−ϵ, 0 ≤ s, t ≤ T a.s.

Let f : [0, T ] → R be a measurable function and α > 0, and σ and η be real. Define the

Erdeyli-Kober-type fractional integral

(IαT,σ,ηf)(s) =
σsαη

Γ(α)

∫ T

s

tσ(1−α−η)−1f(t)

(tσ − sσ)1−α
dt, s ∈ [0, T ],(2. 1)

and

nH(t, s) =

√
π

2H− 1
2

I
H− 1

2

T,2, 3−2H
4

(uH− 1
2 )I[0,t)(s)(2. 2)

=
21−H√

π

Γ(H − 1
2)
s

3
2
−H

∫ t

0
(x2 − s2)H− 3

2dx I(0,t)(s).

The following theorem is due to Dzhaparidze and Van Zanten (2004) and Tudor (2009).

Theorem 2.2: The following representation holds, in distribution, for the sub-fBm ζH :

ζHt
∆
= cH

∫ t

0
nH(t, s)dWs, 0 ≤ t ≤ T(2. 3)

where

c2H =
Γ(2H + 1) sin(πH)

π
(2. 4)
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and {Wt, t ≥ 0} is the standard Brownian motion.

Tudor (2007b) obtained the prediction formula for a sub-fBm. For any 0 < H < 1, and

0 < a < t,

E[ζHt |ζHs , 0 ≤ s ≤ a] = ζHa +

∫ a

0
ψa,t(u)dζ

H
u(2. 5)

where

ψa,t(u) =
2 sin(π(H − 1

2))

π
u(a2 − u2)

1
2
−H

∫ t

a

(z2 − a2)H− 1
2

z2 − u2
zH− 1

2dz.(2. 6)

Let

MH
t = dH

∫ t

0
s

1
2
−HdWs(2. 7)

where

dH =
2H− 1

2

cHΓ(32 −H)
√
π
.(2. 8)

The processMH = {MH
t , t ≥ 0} is a Gaussian martingale (cf. Tudor (2009)) and is called

the sub-fractional fundamental martingale. The filtration generated by this martingale is the

same as the filtration {Ft, t ≥ 0} generated by the sub-fBm ζH and the quadratic variation <

MH ,MH >s of the martingale MH over the interval [0, s] is equal to wH(s) =
d2H

2−2H s
2−2H =

λHs
2−2H (say). For any measurable function f : [0, T ] → R with

∫ T
0 f2(s)s1−2Hds < ∞,

define the probability measure Qf by

dQf

dP
|Ft = exp(

∫ t

0
f(s)dMH

s − 1

2

∫ t

0
f2(s)d < MH ,MH > (s))

= exp(

∫ t

0
f(s)dMH

s − d2H
2

∫ t

0
f2(s)s1−2Hds).

where P is the underlying probability measure. Let

(ψHf)(s) =
1

Γ(32 −H)
I
H− 1

2

0,2, 1
2
−H

f(s)(2. 9)

where, for α > 0,

(Iα0,σ,ηf)(s) =
σs−σ(α+η)

Γ(α)

∫ s

0

tσ(1+η)−1f(t)

(tσ − sσ)1−α
dt, s ∈ [0, T ].(2. 10)

Then the following Girsanov type theorem holds for the sub-fBm process (Tudor (2009)).

Theorem 2.3: The process

ζHt −
∫ t

0
(ψHf)(s)ds, 0 ≤ t ≤ T
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is a sub-fbm with respect to the probability measure Qf . In particular, choosing the function

f ≡ a ∈ R, it follows that the process {ζHt −at, 0 ≤ t ≤ T} is a sub-fBm under the probability

measure Qf with f ≡ a ∈ R.

Let

ψH(t, s) =
sH− 1

2

Γ(32 −H)
[tH− 1

2 (t2 − s2)
1
2
−H − (H − 3

2
)

∫ t

s
(x2 − s2)

1
2
−HxH− 3

2dx]I(0,t)(s)

and

kH(t, s) = dHs
1
2
−HψH(t, s).(2. 11)

Let Y = {Yt, t ≥ 0} be a stochastic process defined on the filtered probability space

(Ω,F , (Ft, t ≥ 0), P ) and suppose the process Y satisfies the stochastic differential equa-

tion

dYt = C(t)dt+D(t)dζHt , t ≥ 0(2. 12)

where the function C(t), adapted to the filtration {Ft, t ≥ 0}, and the non-random function

D(t) are such that the process

RH(t) =
d

dwH
t

∫ t

0
kH(t, s)

C(s)

D(s)
ds, t ≥ 0(2. 13)

is well-defined and the derivative is understood in the sense of absolute continuity with

respect to the measure generated by the function wH . Differentiation with respect to wH
t is

understood in the sense:

dwH
t = λH(2− 2H)t1−2Hdt

and
df(t)

dwH
t

=
df(t)

dt
/
dwH

t

dt
.

Suppose the processRH(t) defined over the interval [0, T ] belongs to the space L2([0, T ], dwH
t ).

Define

ΛH
t = exp{

∫ t

0
RH(s)dMH

s − 1

2

∫ t

0
[RH(s)]2dwH

s }.(2. 14)

If E(ΛH
T ) = 1, then the measure P Y = ΛH

T .P is a probability measure and the probabil-

ity distribution of the process Y under P Y coincides with the distribution of the process∫ .
0D(s)dζHs with respect to P (cf. Tudor (2009)).

We call the process ΛH as the likelihood process or the Radon-Nikodym derivative dPY

dP

of the measure P Y with respect to the measure P (cf. Tudor (2009)).
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Let ξ = {ξt, t ≥ 0} be a stochastic process defined on the filtered probability space

(Ω,F , (Ft, t ≥ 0), P ) defined by the equation

ξt = a(t) + η(t)ζHt , t ≥ 0(2. 15)

where ζH is a sub-fractional Brownian motion as defined above with Hurst index H ∈ (12 , 1),

the drift coefficient is given by

a(t) =
k∑

i=1

θiτi(t)(2. 16)

where the vector parameter θ = (θ1, . . . , θk) is unknown but the function τ(t) = (τ1(t), . . . , τk(t))

is known and the function η(t) is assumed to be known. The problem of estimation of the

parameter θ, given the observations {ξs, 0 ≤ s ≤ t}, has been investigated by Diedhiou et al.

(2011) when k = 1.We consider the problem of sequential estimation of the vector parameter

θ given the observations {ξs, 0 ≤ s ≤ t} available up to time t using the maximum likelihood

and Bayesian methods. Sequential estimation and testing for parameters, for processes driven

by a fractional Brownian motion, were investigated in Prakasa Rao (2003, 2004, 2005). For

a survey of problems of estimation for fractional diffusion processes, see Prakasa Rao (2010)

and for diffusion processes, see Prakasa Rao (1999). Optimal estimation of a signal perturbed

by a fractional Brownian noise has been recently discussed by Artemov and Burnaev (2016).

Bayesian sequential estimation of the drift parameter of fractional Brownian motion is also

investigated in Cetin et al. (2013). We now consider a stochastic differential equation of the

form

dξt =
k∑

i=1

θiϕi(t)dt+ σ(t)dζHt , t ≥ 0(2. 17)

and discuss the problem of estimation of the vector parameter θ = (θ1, . . . , θk) based on the

observation of the process ξ over the interval [0, t].

3 Maximum likelihood estimation of the drift parameter

We will now investigate the maximum likelihood estimation of the parameter θ = (θ1, . . . , θk)

based on the observation of the process {ξt, 0 ≤ t ≤ T}. Since the filtrations generated by

the processes {ξt, 0 ≤ t ≤ T}, {ζHt , 0 ≤ t ≤ T} and {MH
t , 0 ≤ t ≤ T} are the same, the

information contained in the three sets of observations is the same and hence the problem

of estimation of the parameter θ based on the observations {ξt, 0 ≤ t ≤ T} is equivalent to

the problem of estimation based on the the process {MH
t , 0 ≤ t ≤ T}. Following the general
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form of the process RH(t) defined in the previous section, we define

RH(t) =
k∑

i=1

θi
d

dwH
t

∫ t

0
kH(t, s)

ϕi(s)

σ(s)
ds =

k∑
i=1

θiψi(t)(3. 1)

where

ψi(t) =
d

dwH
t

∫ t

0
kH(t, s)

ϕi(s)

σ(s)
ds, 1 ≤ i ≤ k.(3. 2)

and the function kH(t, s) is as defined by (2.12). The likelihood process ΛH is given by the

equation

ΛH
t (θ) = exp{

k∑
i=1

θi

∫ t

0
ψi(s)dM

H
s − 1

2

∫ t

0
[
k∑

i=1

θiψi(s)]
2dwH

s }.(3. 3)

Let JH(t) denote the matrix of order k × k with the (i, j)-th element

(JH(t))(i,j) =

∫ t

0
ψi(s)ψj(s)dw

H
s(3. 4)

and let ψH = {ψH
t , t ≥ 0} be a k-dimensional process with the i-th component of ψH

t as

(ψH
t )i =

∫ t

0
ψi(s)dM

H
s , 1 ≤ i ≤ k.(3. 5)

Following the notation defined above, the likelihood process can be written in the form

ΛH
t (θ) = exp{θ′ψH

t − 1

2
θ′JH(t)θ}.(3. 6)

The maximum likelihood estimator θ̂t of the parameter θ is a maximizer of the likelihood

ΛH
s (θ) over the interval [0, t] and can be obtained as a solution of the system of linear

equations ∫ t

0
ψi(s)dM

H
s −

k∑
j=1

θj

∫ t

0
ψi(s)ψj(s)dw

H
s = 0, 1 ≤ i ≤ k(3. 7)

which, in turn, can be written in the form

ψH
t − JH(t)θ = 0.(3. 8)

If the matrix JH(t) is invertible, then the maximum likelihood estimator (MLE) of the vector

parameter θ is given by the equation

θ̂t = J−1
H (t)ψH

t .(3. 9)

Let θ0 be the true mean vector. Note that the martingale MH is a zero mean Gaussian

martingale and hence the random vector ψH
t has the multivariate normal distribution. This

in turn will imply that the the random vector (θ̂t−θ0) has the multivariate normal distribution

with mean zero and the covariance matrix J−1
H (t).
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4 Bayes estimation of the drift parameter

We now consider the problem of Bayes estimation of the parameter θ ∈ Rk assuming that the

parameter θ has a prior probability measure with density pθ(.) with respect to the Lebesgue

measure on Rk and the loss function is the squared error loss function. It is well known that

the Bayes estimator is the conditional expectation of the parameter given the observed data,

that is, it is the mean or expectation of the posterior distribution of the parameter θ given

the observed data. The posterior density of θ given the observed data {ξs, 0 ≤ s ≤ t} or

equivalently the information Ft, the σ-algebra generated by the family {ξs, 0 ≤ s ≤ t}, is
given by

pθ(z|Ft) =
pθ(z)ΛH

t (z)∫
Rk pθ(y)ΛH

t (y)dy
, z ∈ Rk(4. 1)

where ΛH
t (z) is the likelihood process defined earlier. We will also consider the problem

of finding the optimal sequential Bayes estimation rule δ̃ = (τ̃ , θ̃τ ) for estimation of the

parameter θ in the sense that

inf
δ∈D

E[cτ + ||θ∗τ − θ||2] = E[cτ̃ + ||θ − θ̃τ̃ ||2](4. 2)

where D = {δ : (τ, θ∗τ )} is a class of stopping rules with finite stopping time τ ≤ T <∞ with

respect to the filtration {Ft, 0 ≤ s ≤ t}and estimate the parameter θ by θ∗τ . Here Ft is the

σ-algebra generated by the process {ξs, 0 ≤ s ≤ t}. The constant c > 0 can be interpreted

as the cost per unit of observation and the Bayes sequential estimation consists in stopping

sampling at time τ̃ and declaring θ̃τ̃ as the optimal estimator of θ.

Special case: Suppose the vector θ has a multivariate normal prior density with the mean

vector m and the covariance matrix Σ. Following the standard methods, it can be shown

that the optimal Bayes estimator θ̃t, under the squared error loss function based on the

observations up to time t, is given by

θ̃t = E[θ|Ft] = (JH(t) + Σ−1)−1(ψH
t +Σ−1m)(4. 3)

and the mean squared error E[||θ − θ̃t||2|Ft] is the trace of the posterior covariance matrix

given by

Cov[θ|Ft] = (JH(t) + Σ−1)−1.(4. 4)

This can be checked by the arguments similar to those given in the proof of Theorem 3 in

Artemov and Burnaev (2016). We omit the details. The optimal stopping time in this special
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case is given by

τ̃ = arg inf
τ∈D

E[cτ + E(||θ − θ̃τ ||2|Fτ )] = arg inf
t∈[0,T ]

FH(t)(4. 5)

where

FH(t) = ct+ E(||θ − θ̃||2|Ft) = ct+ tr((JH(t) + Σ−1)−1), 0 ≤ t ≤ T.(4. 6)

Note that the function FH(t) is deterministic and hence the optimal stopping rule is deter-

ministic in this special case.

Suppose the observation process ξ = {ξt, t ≥ 0} satisfies the stochastic differential equa-

tion

dξt = θdt+ σdζHt , t ≥ 0(4. 7)

where θ is a scalar and is normally distributed a priori with mean m and variance γ2, then

the posterior distribution of θ given the observed data {ξs, 0 ≤ s ≤ t} is normal with the

mean
(MH

t /σ) + (m/γ2)

wH(t)/σ2 + 1/γ2

and the variance
1

(wH(t)/σ2) + (1/γ2)
.

From the general results on Bayes estimation for squared error loss function, it follows that

the Bayes estimator for the parameter θ is given by

θ̃ = E[θ|Ft] =
(MH

t /σ) + (m/γ2)

wH(t)/σ2 + 1/γ2
(4. 8)

and the variance of this estimator is

E[(θ − θ̃)2|Ft] =
1

(wH(t)/σ2) + (1/γ2)
.(4. 9)

Remarks: It is possible to investigate the problem of Bayes estimation for the vector pa-

rameter θ ∈ Rk when it has a uniform prior on the k-dimensional cube Πk
i=1[ai, bi] following

the arguments in Artemov and Burnaev (2016). We will not go into the details here.
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