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1 Introduction

Let {Xn, n ≥ 1} be a stochastic process defined on a probabilty space (Ω,B, Pθ) taking values

in a measurable space (X,FX). We assume that the parameter θ ∈ Θ ⊂ R but is unknown.

Suppose we observe a sample (X1, . . . , Xn) of the process. The problem of estimation of

the parameter θ based on the observation (X1, . . . , Xn) has been discussed in the literature

over the last several years. For instance, see Billingsley (1961) and Prakasa Rao (1972, 1973,

1977) for the case of the discrete time Markov processes and Basawa and Prakasa Rao (1980)

and Grenander (1981) for stochastic processes in general among others. The problem of

interest is to study the rate of convergence of the maximum likelihood estimator (MLE) θ̂n

of the parameter θ based on the observation (X1, . . . , Xn). Results on moderate deviations

for the maximum likelihood estimator for the case of independent and identically distributed

observations were proved by Gao (2001) and for the case of independent but possibly not

identically distributed observations by Xiao and Liu (2006). Miao and Chen (2010) gave a

simpler proof to obtain these results under weaker conditions using Gärtner-Ellis theorem

(cf. Hollander (2000), Theorem V.6). Miao and Wang (2014) improved the result in Miao

and Chen (2010) by weakening the exponential integrability condition.

Our aim in this paper is to extend the results in Miao and Chen (2010) to maximum like-

lihood estimator for Markov processes. We give a short introduction to maximum likelihood
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estimation for Markov processes due to Billingsley (1961) for completeness and to introduce

the notation.

Suppose the process {Xn, n ≥ 1} is a Markov process for each θ ∈ Θ ⊂ R, with stationary

transition measure

pθ(x,A) = Pθ(Xn+1 ∈ A|Xn = x), A ∈ FX .(1. 1)

We assume that, for each θ ∈ Θ, the function pθ(x,A) is a measurable function of x for each

fixed A ∈ FX and a probability measure on FX for fixed x. It is known that such a set of

transition measures give rise to a Markov process with stationary transition measure given

by (1.1)(cf. Doob (1953)). We assume that, for each θ ∈ Θ, the transition measures admit

a unique stationary probability distribution, that is, there is a unique probability measure

pθ(.) on FX such that

pθ(A) =

∫
X
pθ(x,A) pθ(dx), A ∈ FX .

Here after Eθ(.) will denote the expectation computed under the assumption that θ is the true

parameter. We will not assume that pθ(.) is the initial distribution. The initial distribution

has no effect on the conditional expectation Eθ(.|X1) as the conditional expectation involves

only the transition probability measure. We will assume that there is a σ-finite measure λ

on (X ,FX) with respect to which all the transition measures have densities f(x, y; θ). Hence

pθ(x,A) =

∫
A
f(x, y; θ) λ(dy), A ∈ FX .

We will assume that the initial distribution has a density f(x; θ) with respect to λ.We assume

that the function f(x; θ) is jointly measurable in (x, θ) and the function f(x, y; θ) is jointly

measurable in (x, y, θ).

Suppose (x1, . . . , xn) is an observation on the discrete time Markov process observed up

to time n. Then the log-likelihood function of the observation (x1, . . . , xn) is

log f(x1; θ) +
n−1∑
k=1

log f(xk, xk+1; θ).

The term log f(x1; θ) in the likelihood function is dominated by the other terms in the log-

likelihood function as n tend to infinity and the information about the parameter θ in the

initial observation can be ignored as we are studying the large sample properties of the

estimators for the parameter θ. Hence, we will take the log-likelihood function, here after, to

be

ℓn(x1, . . . , xn; θ) =
n−1∑
k=1

log f(xk, xk+1; θ).
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If we assume that the initial observation x1 is a constant and does not depend on the pa-

rameter θ, then the above expression will be the exact log-likelihood. Suppose the following

regularity conditions hold:

(C0) The parameter space Θ is open in R.

(C1) For any x, the set of y for which f(x, y; θ) > 0 does not depend on the parameter θ.

(C2) For any x and y, the function f(x, y; θ) is thrice differentiable for θ ∈ Θ and the

derivatives are continuous in θ ∈ Θ. Here after we denote the i-th derivative of f(x, y; θ) with

respect to θ evaluated at θ′ as f (i)(x, y; θ′) and let ℓ(x, y; θ) = log f(x, y; θ).

(C3) For any θ ∈ Θ, there exists a neighbourhood G(θ, δ) of θ for some δ > 0, such that

∫
X

sup
θ′∈G(θ,δ)

|f (i)(x, y; θ′)|λ(dy) < ∞, i = 1, 2,

and

Eθ[ sup
θ′∈G(θ,δ)

|ℓ(3)(X1, X2; θ
′)|] < ∞.

(C4) Furthermore

0 ≤ Eθ[|ℓ(1)(X1, X2; θ)|2] < ∞.

Let I(Xk; θ) denote the conditional Fisher information in the observation in Xk+1 given

the observations Xi, 1 ≤ i ≤ k or equivalently Xk by the Markov property of the process

{Xi, i ≥ 1} when the true parameter is θ.

In view of Theorem 1.1 stated below, it follows that

1

n

n−1∑
k=1

I(Xk; θ)

tends to a limit, say, I(θ) a.s. as n → ∞. This limit does not depend on the initial distribu-

tion of the Markov process. Suppose that 0 < I(θ) < ∞.

In addition to the conditions (C1) to (C4), we assume the following condition holds:
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(C5) For each θ ∈ Θ, the stationary distribution pθ(.) exists and is unique and has the

property, that for each x ∈ X , the probability measure corresponding to the probability

density function pθ(x, .) is absolutely continuous with respect to the probability measure

corresponding to the probability density function pθ(.).

Billingsley (1961) proved the following strong law of large numbers for Markov processes.

Theorem 1.1: Suppose the condition (C5) holds. Then, no matter what the initial distri-

butions is, if ϕ(x, y) is measurable with respect to FX × FX , and if Eθ(|ϕ(X1, X2)|) < ∞,

then

lim
n→∞

1

n

n−1∑
k=1

ϕ(Xk, Xk+1) = Eθ(ϕ(X1, X2))

almost surely.

In view of the conditions (C1) to (C5), it follows that

Eθ(ℓ
(1)(Xk, Xk+1; θ)|Xk) = 0

almost surely and the partial sums

n−1∑
k=1

ℓ(1)(Xk, Xk+1; θ), n ≥ 2

form a martingale under the probability measure Pθ. An application of central limit theorem

for martingales due to Billingsley (1961) or Ibragimov (1963) will show that the sequence

1√
n

n−1∑
k=1

ℓ(1)(Xk, Xk+1; θ)

is asymptotically normal with mean zero and variance I(θ) < ∞. The following theorem is

due to Billingsley (1961).

Theorem 1.2: Suppose the conditions (C1)-(C5) hold. Then there exists a sequence θ̂n

of random variables depending on the observations (x1, . . . , xn) such that θ̂n converges in

probability to the true parameter θ and such that θ̂n is a solution of the likelihood equation

d

dθ
ℓn(x1, . . . , xn; θ) =

n−1∑
k=1

ℓ(1)(xk, xk+1; θ) = 0.

Furthermore
√
n(θ̂n − θ)

L→ N(0,
1

I(θ)
) as n → ∞.
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Here N(µ, σ2) denotes the normal distribution with mean µ and variance σ2. For alter-

nate sufficient conditions for the asymptotic normality of the maximum likelihood estimator

for discrete time Markov processes, see Prakasa Rao (1972). Let ϵ > 0. We now study the

rate of convergence of the probability Pθ(λ(n)|θ̂n − θ| ≥ ϵ) where λ(n) → ∞ and λ(n)√
n

→ 0 as

n → ∞, the problem of moderate deviation.

2 Main results

Let Θ be an open interval in R and the process {Xk, k ≥ 1} be a discrete time homoge-

neous Markov process with the transition density f(x, y; θ), θ ∈ Θ which is continuously

differentiable with respect to θ. Let ℓ(x, y; θ) = log f(x, y; θ). Define

ℓn(x1, . . . , xn; θ) = log
n−1∏
k=1

f(xk, xk+1; θ) =
n−1∑
k=1

ℓ(xk, xk+1; θ)

and, for any n ≥ 1,

ℓ(1)n (x1, . . . , xn; θ) =
∂ℓn(x1, . . . , xn; θ)

∂θ
, (x1, . . . , xn) ∈ Rn.

We define the maximum likelihood estimator θ̂n(x1, . . . , xn) as a solution of the equation

ℓ(1)n (x1, . . . , xn; θ) = 0.

Let

θn = θn(x1, . . . , xn) = inf{θ ∈ Θ : ℓ(1)n (x1, . . . , xn; θ) ≤ 0}

and

θ̄n = θ̄n(x1, . . . , xn) = sup{θ ∈ Θ : ℓ(1)n (x1, . . . , xn; θ) ≥ 0}.

It is obvious that

θn(x1, . . . , xn) ≤ θ̂n(x1, . . . , xn) ≤ θ̄n(x1, . . . , xn)

and, for every ϵ > 0,

Pθ(θn ≥ θ + ϵ) ≤ Pθ(ℓ
(1)
n (x1, . . . , xn; θ + ϵ) ≥ 0) ≤ Pθ(θ̄n ≥ θ + ϵ)

and

Pθ(θ̄n ≤ θ − ϵ) ≤ Pθ(ℓ
(1)
n (x1, . . . , xn; θ − ϵ) ≤ 0) ≤ Pθ(θn ≤ θ − ϵ).
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We assume that the following conditions hold:

(C1′) For each θ ∈ Θ, the derivatives

ℓ(i)(x, y; θ) =
∂i log f(x, y; θ)

∂θi
, i = 1, 2, 3

exists for all x, y ∈ R.

(C2′) For each θ ∈ Θ, there exists a neighbourhood G(θ, δ) of θ for some δ > 0 and

non-negative measurable functions Ai(x, y; θ), i = 1, 2, 3 such that

sup
x∈R

∫
R
[A(x, y; θ)]6 f(x, y; θ)dy < ∞, i = 1, 2, 3

and

sup
θ′∈G(θ,δ)

|ℓ(i)(x, y; θ′)| ≤ A(x, y; θ), i = 1, 2, 3.

(C3′) For each θ ∈ Θ, the transition probability density function f(x, y; θ) has a finite

non-negative conditional Fisher information, that is,

0 ≤ I(x; θ) = Eθ[(
∂ log f(X1, X2; θ)

∂θ
)2|X1 = x] < ∞

for all x ∈ R.

(C4′) For each θ ∈ Θ, there exists a function 0 < I(θ) < ∞ such that

1

n

n−1∑
k=1

Eθ(I(Xk; θ)) → I(θ)

as n → ∞.

(C5′) For each θ ∈ Θ, there exists µ = µ(θ) and ν = ν(θ) such that

sup
(t,ϵ)∈[−µ,µ]×[−ν,ν]

ϕ(t; θ, ϵ) < ∞,

where

ϕ(t; θ, ϵ) = sup
x

Eθ[exp(tℓ
(1)(X1, X2; θ + ϵ))|X1 = x].

(C6′) For all (x1, . . . , xn) ∈ Rn, n ≥ 1, the likelihood equation

ℓ(1)n (x1, . . . , xn; θ) = 0
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has a unique solution.

Under the conditions (C1′)− (C3′), it can be checked that,

Eθ(ℓ
(1)(X1, X2; θ)|X1 = x) = 0 a.s.(2. 1)

and

Eθ[(ℓ
(1)(X1, X2; θ))

2|X1 = x] = −Eθ[ℓ
(2)(X1, X2; θ)|X1 = x] = I(x; θ) a.s.(2. 2)

(C7′) Suppose that {λ(n), n ≥ 1} is a sequence of positive numbers such that λ(n) →
∞, λ(n)√

n
→ 0 as n → ∞ and

Eθ[|
n−1∑
k=1

ℓ(1)(Xk, Xk+1; θ +
ϵ

λ(n)
)|3] = o(nλ(n)).

Theorem 2.1: Under the conditions (C1′) to (C7′),

lim inf
n→∞

λ2(n)

n
logPθ(λ(n)(θ̄n − θ) ≥ ϵ) ≥ −1

2
I(θ)ϵ2,(2. 3)

lim inf
n→∞

λ2(n)

n
logPθ(λ(n)(θn − θ) ≤ −ϵ) ≥ −1

2
I(θ)ϵ2,(2. 4)

lim sup
n→∞

λ2(n)

n
logPθ(λ(n)(θn − θ) ≥ ϵ) ≤ −1

2
I(θ)ϵ2,(2. 5)

and

lim sup
n→∞

λ2(n)

n
logPθ(λ(n)(θ̄n − θ) ≤ −ϵ) ≤ −1

2
I(θ)ϵ2.(2. 6)

Furthermore

lim
n→∞

λ2(n)

n
logPθ(λ(n)|θ̂n − θ| ≥ ϵ) = −1

2
I(θ)ϵ2.(2. 7)

The following theorem is a consequence of Theorem 2.1.

Theorem 2.2: Suppose that the conditions (C1′) to (C6′) hold. Then,

for any closed subset F ⊂ Θ,

lim sup
n→∞

λ2(n)

n
logPθ(λ(n)(θ̂n − θ) ∈ F ) ≤ −1

2
I(θ) inf

x∈F
x2,(2. 8)

and, for any open subset G ⊂ Θ,

lim inf
n→∞

λ2(n)

n
logPθ(λ(n)(θ̂n − θ) ∈ G) ≥ −1

2
I(θ) inf

x∈G
x2,(2. 9)

and, for any ϵ > 0,

lim
n→∞

λ2(n)

n
logPθ(λ(n)|θ̂n − θ| ≥ ϵ) = −1

2
I(θ)ϵ2,(2. 10)
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3 Proofs of Theorem 2.1 and Theorem 2.2

We now prove the following lemma.

Lemma 3.1: Under the conditions (C1′) to (C5′), for any ϵ > 0,

lim
n→∞

λ2(n)

n
logPθ(ℓ

(1)
n (X1, . . . , Xn; θ +

ϵ

λ(n)
) ≥ 0) = −I(θ)ϵ2

2
(3. 1)

and

lim
n→∞

λ2(n)

n
logPθ(ℓ

(1)
n (X1, . . . , Xn; θ −

ϵ

λ(n)
) ≤ 0) = −I(θ)ϵ2

2
.(3. 2)

Proof: Applying the Taylor’s expansion of ℓ(1)(x, y; θ) in the neighbourhood N(θ, δ), we get

that

sup
x∈R

|ℓ(1)(x, y; γ)− ℓ(1)(x, y; θ)− (γ − θ)ℓ(2)(x, y; θ)| ≤ 1

2
(γ − θ)2A3(x, y; θ).

Hence, for any k ≥ 1,

|ℓ(1)(Xk, Xk+1; θ+
ϵ

λ(n)
)−ℓ(1)(Xk, Xk+1; θ)−

ϵ

λ(n)
ℓ(2)(Xk, Xk+1; θ)| ≤

ϵ2

2λ2(n)
A3(Xk, Xk+1; θ).

Hence, by the condition (C2′) and the equations (2.1) and (2.2), it follows that

(3. 3)

Eθ[ℓ
(1)(Xk, Xk+1; θ +

ϵ

λ(n)
)] = Eθ[ℓ

(1)(Xk, Xk+1; θ)] +
ϵ

λ(n)
Eθ[ℓ

(2)(Xk, Xk+1; θ)] + o(
1

λ(n)
)

= −Eθ[I(Xk; θ)]
ϵ

λ(n)
+ o(

1

λ(n)
).

Therefore, it follows that

Pθ(ℓ
(1)
n (X1, . . . , Xn; θ +

ϵ

λ(n)
) ≥ 0)

= Pθ[
λ(n)

n

n−1∑
k=1

(ℓ(1)(Xk, Xk+1; θ +
ϵ

λ(n)
)− Eθ(ℓ

(1)(Xk, Xk+1; θ +
ϵ

λ(n)
))

≥ −λ(n)

n

n−1∑
k=1

Eθ(ℓ
(1)(Xk, Xk+1; θ +

ϵ

λ(n)
))]

= Pθ[
λ(n)

n

n−1∑
k=1

(ℓ(1)(Xk, Xk+1; θ +
ϵ

λ(n)
)− Eθ(ℓ

(1)(Xk, Xk+1; θ +
ϵ

λ(n)
))

≥
∑n−1

k=1 Eθ(I(Xk, θ))

n− 1
ϵ+ o(1)] (by (3.3))
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We now compute the functional

lim
n→∞

λ2(n)

n
logEθ{exp(

t

λ(n)

n−1∑
k=1

[ℓ(1)(Xk, Xk+1; θ +
ϵ

λ(n)
)− Eθ(ℓ

(1)(Xk, Xk+1; θ +
ϵ

λ(n)
))])}

for any t ∈ R. Applying the inequality

|ex − 1− x− x2

2
| ≤ |x|3e|x|, x ∈ R

and the condition (C5′), it follows that, for every k ≥ 1, and for t ∈ R,

(3. 4)

Eθ{exp(
t

λ(n)
ℓ(1)(Xk, Xk+1; θ +

ϵ

λ(n)
))} = 1 +

t

λ(n)
Eθ[ℓ

(1)(Xk, Xk+1; θ +
ϵ

λ(n)
)]

+
t2

2λ2(n)
Eθ([ℓ

(1)(Xk, Xk+1; θ +
ϵ

λ(n)
)]2) + o(

1

λ2(n)
).

Let

Jn,ϵ ≡
n−1∑
k=1

ℓ(1)(Xk, Xk+1; θ +
ϵ

λ(n)
),

Hn ≡ sup
θ′∈G(θ,δ)

|
n−1∑
k=1

ℓ(2)(Xk, Xk+1; θ
′)|,

and

Kn ≡ sup
θ′∈G(θ,δ)

|
n−1∑
k=1

ℓ(3)(Xk, Xk+1; θ
′)|.

Observe that

|Jn,ϵ| ≤ Jn ≡
n−1∑
k=1

A(Xk, Xk+1; θ) = Op(n),

Hn ≤ Jn = Op(n)

and

Kn ≤ Jn = Op(n)

by the condition (C2′) and Theorem 1.1. Note that, for every ϵ > 0,

Jn,ϵ =
n−1∑
k=1

ℓ(1)(Xk, Xk+1; θ +
ϵ

λ(n)
) = op((nλ(n))

1/3)
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by the condition (C7′). Then, by the conditions (C2′) and (C5′) and the equations (2.1) and

(2.2), it follows that

(3. 5)

logEθ(exp(
t

λ(n)

n−1∑
k=1

[ℓ(1)(Xk, Xk+1; θ +
ϵ

λ(n)
)− Eθ(ℓ

(1)(Xk, Xk+1; θ +
ϵ

λ(n)
))]))

= log[Eθ{exp(
t

λ(n)

n−1∑
k=1

ℓ(1)(Xk, Xk+1; θ +
ϵ

λ(n)
))}]

+(− t

λ(n)

n−1∑
k=1

Eθ(ℓ
(1)(Xk, Xk+1; θ +

ϵ

λ(n)
)))

= logEθ[1 +
t

λ(n)

n−1∑
k=1

ℓ(1)(Xk, Xk+1; θ +
ϵ

λ(n)
)

+
t2

2λ2(n)
[
n−1∑
k=1

ℓ(1)(Xk, Xk+1; θ +
ϵ

λ(n)
)]2

+Op(
t3

λ3(n)
|Jnϵ|3)](3. 6)

+(− t

λ(n)

n−1∑
k=1

Eθ(ℓ
(1)(Xk, Xk+1; θ +

ϵ

λ(n)
)))

= logEθ[1 +
t

λ(n)

n−1∑
k=1

ℓ(1)(Xk, Xk+1; θ)

+
tϵ

λ2(n)

n−1∑
k=1

ℓ(2)(Xk, Xk+1; θ) +Op(
tϵ2

λ3(n)
Kn)

+
t2

2λ2(n)
[
n−1∑
k=1

ℓ(1)(Xk, Xk+1; θ)]
2 +Op(

t2ϵ

λ3(n)
J1/2
n H1/2

n )] +Op(
t3

λ3(n)
|Jnϵ|3)

+(− t

λ(n)

n−1∑
k=1

Eθ(ℓ
(1)(Xk, Xk+1; θ +

ϵ

λ(n)
)))

= log[1 + (
−tϵ

λ2(n)
+

t2

2λ2(n)
)
n−1∑
k=1

Eθ(I(Xk; θ)) +O(
t3ϵ

λ3(n)
op(nλ(n)))]

+(− t

λ(n)

n−1∑
k=1

Eθ(ℓ
(1)(Xk, Xk+1; θ +

ϵ

λ(n)
)))

= (
−tϵ

λ2(n)
+

t2

2λ2(n)
)
n−1∑
k=1

Eθ(I(Xk; θ)) +O(
t3ϵ

λ3(n)
op(nλ(n)))

+(− t

λ(n)

n−1∑
k=1

Eθ(ℓ
(1)(Xk, Xk+1; θ +

ϵ

λ(n)
)))
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= (
−tϵ

λ2(n)
+

t2

2λ2(n)
)
n−1∑
k=1

Eθ(I(Xk; θ)) +O(
t3ϵ

λ3(n)
op(nλ(n))))

+(
tϵ

λ2(n)

n−1∑
k=1

Eθ(I(Xk, θ)) +O(
tϵ2

λ3(n)
Kn)

=
t2(n− 1)

2λ2(n)
I(θ) +O(

t3ϵ

λ3(n)
op(nλ(n)))).

which implies that

lim
n→∞

λ2(n)

n
logEθ{exp(

t

λ(n)

n−1∑
k=1

[ℓ(1)(Xk, Xk+1; θ +
ϵ

λ(n)
)− Eθ(ℓ

(1)(Xk, Xk+1; θ +
ϵ

λ(n)
)])}

=
I(θ)

2
t2.

Applying the Gärtner-Ellis theorem (cf. Gärtner (1977); Ellis (1984); Hollander (2000), The-

orem V.6), we get the result stated in equation (3.1) of Lemma 3.1. Similar analysis will

prove equation (3.2).

Proof of Theorem 2.1: Observe that

Pθ(λ(n)(θ̄n − θ) ≥ ϵ) ≥ Pθ(ℓ
(1)
n (X1, . . . , Xn; θ +

ϵ

λ(n)
≥ 0)

and

Pθ(λ(n)(θn − θ) ≥ ϵ) ≤ Pθ(ℓ
(1)
n (X1, . . . , Xn; θ +

ϵ

λ(n)
≥ 0).

An application of Lemma 3.1 implies the relations (2.3) and (2.5). Similar arguments prove

(2.4), (2.6) and (2.7).

Proof of Theorem 2.2 is analogous to the proof of a similar result in Gao (2001) in the

work on moderate deviation of the maximum likelihood estimator in the independent and

identically distributed case.

Proof of Theorem 2.2 : For any closed subset F ⊂ Θ ⊂ R, define x1 = inf{x > 0 : x ∈ F}
and x2 = sup{x < 0 : x ∈ F}. Let I(y; θ) = 1

2I(θ)y
2.Then

lim sup
n→∞

λ2(n)

n
logPθ(λ(n)(θ̂n − θ) ∈ F )
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≤ lim sup
n→∞

λ2(n)

n
log(Pθ(λ(n)(θ̂n − θ) ≤ x2) + Pθ(λ(n)(θ̂n − θ) ≥ x1))

≤ max(−I(x2; θ),−I(x1; θ)) = − inf
x∈F

I(x; θ) = −1

2
I(θ) inf

x∈F
x2.

Suppose G is an open subset of Θ ⊂ R. Then, for any ϵ > 0 such that (x− ϵ, x+ ϵ) ⊂ G, it

follows that

Pθ(λ(n)(θ̂n − θ) ∈ G)

≥ Pθ(x− ϵ ≤ λ(n)(θ̂n − θ) ≤ x+ ϵ)

= Pθ[
n∑

k=1

ℓ(1)(Xk, Xk+1; θ +
x+ ϵ

λ(n)
≤ 0,

n∑
k=1

ℓ(1)(Xk, Xk+1; θ +
x− ϵ

λ(n)
≥ 0].

Note that the sequence {Sn =
∑n

k=1 ℓ
(1)(Xk, Xk+1; θ), n ≥ 1} is a zero mean martingale

under Pθ-measure. Applying martingale central limit theorem, it follows that

Pθ(
1√
n

n∑
k=1

ℓ(1)(Xk, Xk+1; θ) ≥ ηt) → 1− Φ(
ηt

σθ
)

for some σθ > 0. By arguments similar to those given in the proof of Theorem 2.1, it follows

that, for all t > 0 and η > 0,

lim inf
n→∞

Pθ(λ(n)(θ̂n − θ) ∈ G)

≥ 1

t2
log(Φ(t(η + I(θ)(x+ ϵ))/σθ)− Φ(t(η + I(θ)(x− ϵ))/σθ)).

Let η → 0 at first, then let t → ∞ and let ϵ → 0. Then we get that

lim inf
n→∞

P (θ(λ(n)(θ̂n − θ) ∈ G) ≥ −1

2
I(θ)x2.(3. 7)

Since x ∈ G is arbitrary in the above discussion, it follows that

lim inf
n→∞

P (θ(λ(n)(θ̂n − θ) ∈ G) ≥ −1

2
I(θ) inf

x∈G
x2.(3. 8)

We will present an example to illustrate the results.

Example: Let {Xn, n ≥ 1} be a stochastic process defined recursively by the relation

Xn+1 = θXn + Yn+1

where {X1, Y2, Y3, . . .} is an independent sequence of random variables. Further suppose that

|θ| < 1 and the random variable Yn is standard normal for every n ≥ 2. This is the first-order

12



linear autoregressive model and it is known that there exists a unique stationary distribution

for the process and it is normal with mean zero and variance 1
1−θ2

. Suppose that the random

variable X1 has this stationary distribution. Then the process {Xn, n ≥ 1} is a stationary

Markov process. It can be checked that the logarithm of the transition density function

f(xk, xk+1; θ) is given by

ℓ(xk, xk+1; θ) = log(2π)−1/2 − 1

2
(xk+1 − θxk)

2.

It is easy to check that the first three derivatives of ℓ(xk, xk+1; θ) exist and are given by

ℓ(1)(xk, xk+1; θ) = xk(xk+1 − θxk),

ℓ((2)(xk, xk+1; θ) = −x2k,

and

ℓ(3)(xk, xk+1; θ) = 0.

It can now be seen the the conditions (C1′) to (C6′) hold in this example from the properties of

the Gaussian distribution and hence the results stated in Theorem 2.2 hold for the maximum

likelihood estimator for θ with the function I(θ) = 1
1−θ2

.
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