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Abstract A vertex (edge) [vertex edge] cycle stochastic function of a graph G
is a labeling of vertices (edges) [vertices and edges| by non-negative real valued
function fy : V(G) — Rt (fg : E(G) — R*Y) [fye : V(G)U E(G) — RY]
such that for every cycle of G, the sum of labels of its vertices (edges) [vertices
and edges| is 1. We begin by proving vertex edge cycle stochastic graphs are
same as edge cycle stochastic graphs. We then find the following: (1) struc-
ture theorem for biconnected vertex cycle stochastic graphs and edge cycle
stochastic graphs, (2) a minimal forbidden graph characterization for bicon-
nected vertex cycle stochastic graphs, (3) description of a minimal forbidden
graph characterization for vertex cycle stochastic graphs, and (4) some graph
characteristics and algorithms to find them when restricted to these classes of
graphs.

Keywords cycle stochastic graphs - edge cycle stochastic - vertex cycle
stochastic - structural characterization - forbidden induced subgraphs -
computational complexity

1 Introduction
Motivation: Berge introduced the notion of stochastic graphs in [2] as a gen-

eralization of strongly perfect graphs i.e. graphs whose every induced sub-
graph contains an independent set of vertices that meets every maximal clique.
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He defined stochastic graph to be a vertex labeled graph with non-negative
real labels such that every maximal clique has a total weight equal to 1.
Parameswaran in his thesis [7], extended this notion to cycles, amongst others.
Following this line of research we characterize various kinds of cycle stochastic
graphs. We begin by the following definitions.

Edge cycle stochastic: A graph G is said to be edge cycle stochastic (ECS in
short) if there is a non-negative real valued function fg : E(G) — R such
that for every cycle C of G, fg(C) =} .cpc) fE(e) = 1.

Vertex cycle stochastic: A graph G is said to be vertex cycle stochastic (VCS
in short) if there is a non-negative real valued function fy : V(G) — R* such

that for every cycle C of G, fi (C) = Zvev(c) fv(v) =1.
Combining these two ideas it is natural to define the following notion.

Vertex edge cycle stochastic: A graph G is said to be vertex edge cycle stochas-
tic (VECS in short) if there is a non-negative real valued function fy g : V(G)U
E(G) — RT such that for every cycle C of G, fyg(C) = Zvev(c) fve) +

ZeGE(C) fve(e) =1.

For the sake of conciseness, we shall use the short forms VCS, ECS and
VECS.

Connections: Due to the close resemblance in the definitions of the above three
classes of graphs, it is natural to expect some connections between them.

Remark 1 The following three observations explore the connections between
VCS, ECS and VECS graphs.

1. Every VCS graph is ECS. To see this just label edge wv as fg(uv) =
slfv(u) + fv(v)].

2. Every ECS (VCS) graph is VECS, since the ECS (VCS) labeling can be
extended to VECS labeling by assigning the value 0 to all of its vertices
(edges).

3. Every VECS graph is ECS. Define fg(uv) = fvg(uw)+i[fve(u)+ fvev));
so for cycle C, - v o) [VE(W) + X ccpo) fve(e) =1= 3" fe(w) = 1.

Points 2 and 3 of the above remark prove the following lemma.
Lemma 1 The class of ECS graphs and VECS graphs are the same.

So from now onwards we shall be addressing the ECS and VCS graphs
only.
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Basic Definitions: For the reader’s convenience, we recall some basic defini-
tions about graphs which will be useful in this article. A path Py is a graph
with vertex set {v1,vs,...,v;} and edge set {vive,vovs, ..., Vk_1Vk }, for some
k > 1. A cycle Cy, is a graph with vertex set {vy,vs,...,vx} and edge set of
the path Py including {viv;}, for some k& > 1. A chord of a cycle is an edge
joining two of its non-adjacent vertices. A graph, other than a cycle, is said to
be chordless if none of the cycles in it contain a chord. We exclude the graph to
be a cycle in order to avoid conflicts. A wheel Wy, is formed by joining a vertex
to all the vertices of cycle Cj_1. This cycle is called the outer rim of the wheel.
A vertex is said to be a cut vertex (or cutpoint) c of a graph G, if its removal
disconnects G. A graph is said to be biconnected if it has no cut vertices. A
block B of a graph is a maximal biconnected graph. A block—cutpoint graph
be(G) of G is defined as the graph with vertex set {B;} U {c;} (representing
blocks and cut vertices respectively), with two vertices B; and ¢; adjacent if
c; is in B;. Thus be(G) is a tree, whose end vertices always represent blocks.
An edge is said to be a cut edge of a graph G, if its removal disconnects G.
A property P is said to be hereditary in a class of graphs G, if every induced
subgraph of G' € G also satisfies P. Similarly a property P is said to be strongly
hereditary in a class of graphs G, if every subgraph of G € G also satisfies P. So
as the name suggests, strongly hereditary is a stronger notion than hereditary
properties.

By a contraction of an edge we mean replacing its end vertices by a new
vertex with their adjacencies. A graph G is a minor of H if G can be ob-
tained from H by deleting vertices and contracting edges. A subdivision of a
graph is obtained by adding vertices of degree two into edges. The chromatic
number x(G) of a graph G is the smallest number of colors needed to color
the vertices of GG such that adjacent vertices have different colors. CHROMATIC
problem deals with determination of the chromatic number of a graph. 3—
CHROMATIC and k—CHROMATIC problems deal with checking whether a graph
can be colored with 3 and k colors respectively. The edge chromatic number
X'(G) is the smallest number of colors needed to color the edges of G such
that edges sharing a common vertex have different colors. The clique number
w(G) is the largest set of pairwise adjacent vertices. CLIQUE problem deals
with determination of the clique number of a graph. 3—CLIQUE problem deals
with checking whether a graph has clique number greater than equal to 3. A
graph of order n is Hamiltonian if it contains a cycle of order n. HAMILTONIAN
problem deals with checking whether the graph is Hamiltonian. The feedback
verter set S of a graph is a set of vertices such that every cycle contains a
vertex in S. For other definitions on graph theory (computational complexity),
we refer to Harary [5] (Garey and Johnson [3]).

Forbidden Graphs : It should be noted that these classes of graphs are not
only hereditary but also strongly hereditary. Due to the folklore result by
Hemminger [4] that for any hereditary property there is a set of minimal
forbidden graphs. For ECS graphs a forbidden graph characterization was
found by Balasubramanian et al. in [1], by means of 5 subdivision classes
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Fig. 1 ECS Forbidden Graphs

shown in Fig 1. We give an alternate proof of this result in Corollary 2. They
also proved that a graph is ECS if and only if it has no subgraph contractible
to graphs in Fig 1.1 and Fig 1.2. So in addition to the graphs in Fig 1, VCS
graphs will have a few more families of forbidden graphs. This is explored later
in Section 4.

Objectives and Approach: The main results of this article is outlined in Fig 2.
We begin by finding which of the biconnected ECS graphs are also VCS. We
use the simple fact that any biconnected graph (block) is either a cycle, or a
cycle with a chord, or chordless. This results in a structural characterization of
biconnected VCS graphs. We extend this characterization to biconnected ECS
graphs. Since in an ECS graph the edges are labeled, joining the blocks (bicon-
nected ECS graphs) at cut vertices preserves the ECS nature of the resultant
graph, as no new cycles are created. This gives a structural characterization
of ECS graphs. However this is not so trivial in case of VCS graphs because
the label of cut vertices should be the same in all of the blocks they are in. So
we first found a forbidden graph characterization for biconnected VCS graphs.
Using this we found a characterization of VCS graphs. Due to these structural
characterizations, it is natural to expect that some of the graph characteris-
tics and problems will be easy to find/solve when restricted to these classes of
graphs. Hence we look into various graph characteristics and find that many
problems that are NP-complete for general graphs are polynomial for these
classes of graphs.

Assumption: As the presence of cut edges does not affect our VCS and ECS
labelings, we consider only graphs without cut edges. Every statement re-
garding computational complexity in this article is under the assumption that

P £NP.

Organization: We already have explored the connections between VCS, ECS
and VECS graphs in this section. Section 2 deals with the main theme of
this paper i.e. development of the structural characterization for biconnected
VCS graphs. This is further extended to ECS graphs in Section 3 in form of a
structure theorem. In Section 4 we first develop a minimal forbidden subgraph
characterization for biconnected VCS graphs and then for VCS graphs; inde-
pendently using the structural characterization for biconnected VCS graphs
(developed in Section 2) and the minimal forbidden graph characterization
of VCS graphs we extend the characterization to VCS graphs in Section 5.
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Fig. 2 Outline of characterization of VCS and ECS graphs. [t] refers to this paper.

We use these structural characterizations to find results on graph characteris-
tics like chromatic number, clique number, edge chromatic number, planarity,
Hamiltonianity and length of longest cycle in Section 6. We end with some
concluding remarks in Section 7.

2 ECS to VCS

Remark 1.1 proves that every VCS graph is also ECS. Since a characterization
of ECS graphs is known, one would naturally be interested in finding when an
ECS graph is also a VCS. The following lemma explores such a connection.

Lemma 2 An ECS graph with no two adjacent vertices with degree greater
than 2 is always VCS.

Proof If no two degree 3 vertices are adjacent then the path between such
vertices (v;,v;) with degree greater than or equal to 3 in cycle C; contains
at least one vertex with degree 2. For all such v;v; paths containing no other
vertex with degree greater than equal to 3, choose a degree 2 vertex v, and
label it as sum of edge labels of the v;v; path. Label all other vertices 0. This
results in a VCS. ad

Our aim is to find a characterization of VCS graphs. Our approach is as
follows: since every graph can be broken down into blocks, we first look into
which of these biconnected graphs (blocks) are VCS. Once this is done, and
all blocks turn out to be VCS, we try to figure out to appropriately label the
vertices of the blocks such that by joining these blocks the VCS is maintained
in the whole graph. We begin with the following rudimentary observation.

Lemma 3 For a set of vertices S C V(G) of a biconnected graph G and
another vertex v & S, there are two disjoint paths from v to S.

Now we tackle the problem of finding when a biconnected graph is VCS;
by dividing it into a few sub-problems. If the biconnected graph is a cycle, we
are done since it is always VCS. Now we look whether any cycle has a chord.
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-

Fig. 3 Cycle with a path i.e. chordless block.

For each edge uv, check for biconnectivity between u and v in G —ww. This can
be done in linear time [6]. Once such a chord is found we can check whether
this graph is VCS using a structural characterization developed later in this
article (ref. Lemma 4 and Theorem 1). If no such chords are there, then the
block is chordless, and we will have paths instead of chords; for this also we
develop a structural characterization to check whether such graph is VCS (ref.
Lemma 5 and Theorem 1).

We begin with the following lemma which handles the first non-trivial case
where a biconnected graph has a cycle with a chord agf.

Lemma 4 A biconnected ECS graph containing a cycle with a chord af is
VCS if and only if removal of a or B makes the graph acyclic.

Proof Clearly fy(a)+ fy(5) = 1, and rest all vertices in the cycle C have label
0. Also C' will have no other chords whose both end points are different from
a and (. Now consider a vertex v ¢ V(C) (if no such vertex exists, the lemma
holds). It has two disjoint paths to af8. Hence every such vertex has label 0
for G to be a VCS. So a and [ are the only vertices with possible non-zero
labels since fy (a) + fy(8) = 1. If af is the only chord then either all cycles
pass through both of them, in which case fy () and fy () can have any label
respecting fy (a) + fy(8) = 1; or all cycles pass through one of them, say «,
in which case fy(a) = 1. In the first case removal of a or § makes the graph
acyclic, where as in the second removal of & makes it acyclic. If there are other
chords (and/or paths), then they all must have a common end vertex. Without
loss of generality assume it is «, so fy(a) = 1, then every cycle in the graph
passes through a. So removal of a@ makes the graph acyclic. O

Remark 2 It is easy to see that whenever fy (a) is forced to be 1 then the
graph is a subdivision of W,, — e, where e is an edge in the outer rim of W,.

Now we handle the case of chordless block i.e cycle with path.

Lemma 5 A biconnected ECS graph containing no cycle with a chord is VCS
if and only if it is of the form as shown in Fig 3.

Proof This proof is divided into three parts: obstructions, iterative construc-
tion and VCS labeling.
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Obstructions: Consider a cycle C' with a path af in between, and a vertex v
not lying in C or af (if no such vertex exists, the lemma holds). If two disjoint
paths from v to af have any vertices common with the cycle C, then they
will lie on one side of path af, else a Ks—subdivision is induced and ECS is
prohibited.

Now consider another vertex u not in the part of the graph formed above.
Assume that the two disjoint paths from u to path af lie on the same side of
path af as the pair from v. They cannot look like Fig 4.1 to Fig 4.5, else one
of the subdivisions of graphs in Fig 1 is induced. Hence the only way this is
possible is shown in Fig 4.6. It can be easily checked that the sum of labels
in paths axf, ayB, a,vfy, a,ufy, and o, S, are 1/2 each. (This happens only
if labels are positive real. On the same note all labels here belong to [0, 1],
as a stochastic function should; R™ is given in the definitions to maintain
consistency with previous articles.)

The pair of disjoint paths from v could have end points in a8 path without
having any common vertices with the cycle. Here it is convenient to notice that
any pair of disjoint paths can be treated as another path in the cycle i.e. Fig
4.6 and Fig 4.7 are equivalent. None of these paths are connected in between
by chords or paths, else K, is induced as a minor. So on iteratively adding the
pairs of disjoint paths from all the outer vertices, we end up with something
like Fig 3.

Iterative construction: Now we describe how to construct Fig 3 iteratively. By
a zone we mean a path or two paths (edges or even vertices) located in a
symmetric manner in the cycle with the path af. The following description
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will clear things up. When we initially have a cycle with path af, there are
three zones i.e. the three a8 paths: axf, ayf and azf (ref. Fig 5). On adding
two disjoint paths from v we add at most two more zones. Now the zones are
azf, ayp, (aay, BBy), awzf, and a,vs,. Please note that if both a = a,, and
B = [, then only one new zone will be formed, namely av/3. Two zones are
formed even if either a = o, or 8 = f3,; in this case the three zones («a, 85, ),
azB, and avf, will be replacing az3. We also note that there are two types of
zones: one containing only one path (eg. axf3), called as 1—zone; and the other
containing two disconnected components, eg. (aay, 8,) or (a,[8,), called
as 2—zone. By extremities of a zone we mean the ordered end vertices of the
zone, i.e the extremities of axf are (a,); the extremities of (v, By54)
are (au, By) and (o, By); and the extremities of (au,, B,8.) are (aw, B,) and
(v, Bu). We define this operation of attaching a new vertex v to the previous
graph as a path operation (ref. Fig 5). It should be noted that in a path
operation, the end points of two disjoint paths belong to the same zone, else
K, is induced. Furthermore if the end points of these disjoint paths are joined
to a 2—zone, then they must join to vertices in different components, else one
of the subdivisions of graphs in Fig 1 is induced i.e. for a new vertex w and
zone (Qu,Quy, ByBy) if one disjoint path from w ends in aya,,, the other must
end in 3,03,. Hence such paths are added in a nested fashion. We also use a
subdivision operation which can subdivide any path by adding a new vertex. It
is clear that a path operation increases the number of zones usually by 2, or by
1 only when both the endpoints of the two disjoint paths are the extremities
of a zone. Now we begin the iterative construction of Fig 3.

Take K3 3. Do subdivision and/or path operation. This generates all chord-
less blocks that are VCS.

VCS labeling: Now we give the VCS labeling. Select a non-extremal vertex in
each 1—zone and label it 1/2 and rest all vertices 0. Every possible path from
a to B goes through such a vertex with label 1/2. So we have a VCS, and this
completes the proof. O

Remark 3 Parallel paths: The number of 1-zones initially added to the cycle
(except the 2 on the cycle) are called as parallel paths e.g. Fig 3 has five
parallel paths and Fig 4.7 has three parallel paths. The number of parallel
paths depends on the initial cycle. So any such graph having more that 2
parallel paths can be shown to have just 2 parallel paths by considering two
such consecutive paths forming the initial cycle.

Remark 4 Tree structure: The Ko 3 in the iterative construction contains o
and [ in the vertex partition with two vertices. It is important to notice that
the process of adding 1-zones from K> 3 to the final graph can be represented
as a tree (ref Fig 6). This is because of the fact that the extremities of a 1-
zone to be added belong to the same zone in the graph constructed so far. So
each of the new 1-zone is added to only one parallel path (or one of the two
1—zones of the outer cycle), and within each parallel path, this branching is
maintained, resulting in a tree structure.
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tained in the tree structure. The number of 1-zones and 2—zones in the final graph is same as the
respective leaf vertices in the tree.

Fig. 6 Cycle with a path and the tree structure formed by adding 1-zones.

Remark 5 Tree components: It should be noticed that this VCS labeling of
giving 1/2 to a non-extremal vertex in a l-zone works only because every
cycle has exactly two 1—zones. In fact every af path goes exactly through one
of the 1-zones, and hence contains a vertex with label 1/2. Since there are
no paths/chords connecting these a8 paths in between (else a Ky is induced),
removal of all these 1/2 labeled vertices results in two trees. So if there are ¢
1—zones i.e. t 1/2-labeled vertices, in a chordless block of order n;, then there
are ny +t — 2 edges in such a block. This also tells us that on removing ¢t — 1
edges appropriately we have a spanning tree. Such a spanning tree can be got
by removing exactly one edge incident to the each of the ¢ — 1 1/2-labeled
vertices. Because removal of all these 1/2 labeled vertices results in two trees,
there is a unique cycle passing through a pair of such vertices, so there are
(t) cycles in total. And theses cycles can be found out by joining the two 1/2

2
labeled vertices with the unique paths in the trees between their neighbours.

Remark 6 Any of the cycles formed in Fig 3 can be treated as the outer cycle.
This of course changes the tree structure as described in Remark 4, however
the 1—zones and 2—zones remain the same.
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The above lemmas prove that a biconnected VCS graph can be labeled
with finite labels.

Corollary 1 Any biconnected VCS graph can have a {0,1/2,1}-labeling.

Proof 1f the block is a cycle, we can assign label 1/2 to two vertices and 0 to
rest, or 1 to a single vertex with 0 to rest. If the block is a cycle with a chord,
we just have to make sure that fy(a) + fy(5) = 1. If both o and S have
possible non-zero labels i.e. every cycle passes through these two points which
means unique chord, then we can assign 1/2 to each (or wlog (1,0) to (¢, 3)).
However, if there are many chords through « then assign (1,0) to («, ). For
the third case i.e. cycle with a path, the VCS labeling part of the proof of
Lemma 5 gives a {0,1/2} labeling. This completes the proof. O

Now we explicitly state the structural characterization of biconnected VCS
graphs.

Theorem 1 A biconnected graph is VCS iff it is a cycle or there exists a
vertex whose removal makes it acyclic or is of the form as shown in Fig 3.

Proof Since the graph is biconnected, it has a cycle. If it is a cycle it is already
VCS, else some cycle contains a chord, which can be checked as mentioned
earlier in Section 2. In such a case using the proof of Lemma 4 we have such a
vertex whose removal makes the block acyclic and this is a VCS. If the block
is chordless, then this cycle has a path, say af. A similar analysis as in proof
of Lemma 5 will result in the construction of Fig 3, and this also is a VCS. 0O

3 Graphs To ECS

Although we have a forbidden graph characterization of ECS graphs, the tech-
niques used in the proof of Lemma 5 can be used to find its structural char-
acterization, stated as the following theorem.

Theorem 2 A graph is ECS iff each of its blocks are ECS and are either cycle
or of the form as shown in Fig 8 along with some (or no) chords across the
cycle parallel to the af path.

Proof If all blocks of a graph are ECS, then joining these blocks at the cut
vertices to form the original graph does not add any new cycle, and each edge
belongs to exactly one block. Hence the graph is ECS. Now consider each
block; since it is biconnected, it has a cycle. If the block is a cycle it is already
ECS, else some cycle contains a chord, which can be checked as mentioned
earlier in Section 2. We deal with this case later. If the block is chordless, then
this cycle has a path, say af. A similar analysis as in proof of Lemma 5 will
result in the construction of Fig 3; the only difference being that here edges
are labeled. So instead of labeling a vertex which is not an extremity in each
1—zone, we label the edge above it as 1/2 and give label 0 to all other edges.
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We have a ECS. In the case where cycle has a chord or a path, other parallel
chords are allowed (unlike as in VCS). Using a similar analysis as in proof of
Lemma 5 and the above labeling, we can have an ECS if we label these chords
as 1/2. This concludes our proof. O

Now we prove the main result of Balasubramanian et al. [1], that the 5
subdivision classes of graphs shown in Fig 1 gives a minimal forbidden graph
characterization of ECS graphs. Since a graph is ECS if its blocks are ECS,
we consider only biconnected graphs. We call the class of biconnected graphs
whose minimal forbidden graphs are the 5 subdivision classes of graphs shown
in Fig 1, as S—graphs. Theorem 1 states that all biconnected VCS graphs are
S—graphs. The remaining graphs that are not VCS but belong to S—graphs
are the last graphs described in Theorem 2, which as proved are ECS. So the
S—graphs are precisely the ECS graphs as stated as the following corollary.

Corollary 2 A graph is ECS if and only if it does not contain any subdivision
of graphs shown in Fig. 1.

Remark 7 Using the above result, it is easy to see that a graph is ECS if and
only if it has no subgraph contractible to graphs in Fig 1.1 and Fig 1.2, hence
proving the other result of Balasubramanian et al. [1].

4 Minimal Forbidden Graph Characterization for VCS

In order to obtain a similar characterization for VCS graphs, we need to ob-
tain a minimal forbidden graph characterization for VCS graphs. As all VCS
graphs are ECS that have a similar minimal forbidden graph characterization
as shown in Fig 1, the minimal forbidden graph of VCS contains all these
graphs. The following theorem proves that Fig 1 and Fig 7 contains all the
minimal forbidden graph for biconnected VCS graphs.

e represents a chord, rest all are paths.

Fig. 7 Biconnected VCS Forbidden graph and No VCS Minor

Theorem 3 A biconnected graph is VCS iff it has no subgraph isomorphic to
the family of graphs given in Fig 1 and Fig 7.

Proof As stated above, Fig 1 are minimal forbidden graph for VCS also. Now
we consider each of the three cases discussed in Section 2 i.e. cycle; cycle with
a chord; and chordless block (cycle with a path). Since proofs of these cases
in Section 2 excluded the presence of any graphs in Fig 1, and all biconnected
graphs fall in these three categories; the forbidden graphs, if any, can be ob-
tained by analyzing these cases only. Every cycle is a VCS, so we concentrate
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on the later two cases. Also all chordless graphs i.e. containing only cycles
with paths, of the form in Fig 3, are VCS. The only restriction, not related
to the presence of graphs in Fig 1, comes when the cycle has a chord, where
one must ensure that every cycle passes through the end vertex of the chord.
So the minimal forbidden graph will violate this restriction. The only minimal
forbidden graph of this form is shown in Fig 7. Hence graphs in Fig 1 and Fig
7 are the only minimal forbidden graph for VCS graphs.

(]

Remark 8 There is no minor characterization of VCS graphs. Fig 7 serves as
a counterexample for any such characterization, since it is not VCS where as
its subdivisions (where there is no chord) are.

Lemma 6 FEvery block in a minimal forbidden graph of VCS graphs has cycles
with at most 2 parallel paths.

Proof Assume a minimal forbidden graph of VCS graphs has a block where
a cycle has 3 (or more) parallel paths. Clearly this block has a VCS labeling
as described in proof of Lemma 5. So there is at least another block attached
to it, such that the labels of the cut vertex do not match. Assume these two
blocks combined form the minimal forbidden graph. If the cut vertex is in one
of the 2—zones, then remove the parallel path farther from it. This results in
a smaller graph than the minimal forbidden graph and hence is a VCS. This
VCS is still maintained in the previous graph before removing the parallel
path. Hence it would not be a minimal forbidden graph. Similarly if the cut
vertex is in one of the 1-zones, then removing the parallel path farther from
it would not affect its VCS labeling. Hence the result. ad

In case of ECS, since the edges are labeled and every edge belongs to an
unique block, joining ECS blocks gives a ECS graph. However in case of VCS,
problem occurs since a cut vertex can belong to various blocks, and in order
to maintain the VCS in the whole graph this cut vertex should have the same
label in all these blocks. So this brings in a new set of families of minimal
forbidden graph of VCS graphs. Please note that the minimal forbidden graph
will have two blocks per cut vertex (it is sufficient to just take the two blocks
with different labels). Below we describe how to obtain such minimal forbidden
graph.

Description of minimal forbidden graph for VCS: The graphs in Fig 8 rep-
resent a set of building graphs, where certain vertices are fixed to have a
particular label: 0, 1/2 or 1. These are got from the cases considered while
finding the structural characterizations. If the block is a cycle, none of the
vertices is forced to have a particular label. In case the block has a cycle with
a chord, the vertices of the cycle other than the end points of the chord are
forced to have label 0. This gives us the theta graph. On the other hand if there
are multiple chords, they have to share a common end point which gets label
1, and rest get 0. This results in the ear graph. If the block is chordless, then a
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e represents an edge, rest are paths. All vertices on dashed paths have label 0.

Fig. 8 Building Minimal Forbidden Subgraphs for VCS

1/2 label can be forced if a 1-zone has only one non-extremal vertex. The la-
bels of vertices in a 2—zone is always 0. This results in the 1/2—forced graph. In
case no 1-zones have just one internal vertex, the 2—zones always have vertices
with label 0, resulting in a O—forced graph. So in a way a 1/2—forced graph is
always a O—forced graph. Lemma 6 add an upper limit to maximum number
of parallel paths. These form the basic building blocks of the set of minimal
forbidden graph for VCS. The theta graph has a flexibility in its labeling, its
only restriction is the end vertices of the chord should have a total label of
1. Using this we can form a lot of graphs with forced labels, but composed of
these blocks e.g. Fig 9.

We know that sum of labels of all vertices in a cycle of a VCS graph is 1;
sum of labels of all vertices in a 1-zone of a VCS graph is 1/2; and all vertices
in a 2—zone of a VCS graph are labeled 0. These three rules completely cover
all the possibilities of obtaining a set of minimal forbidden graph for VCS
leading to the following three techniques, each of which result in a set of
families (under subdivision) of minimal forbidden graph. For obtaining type—1
minimal forbidden graph, we merge a vertex of a building graph with another
vertex of a building graph with a different label. Clearly such graphs are not
VCS. We can find a set of minimal forbidden graph from these graphs. For
obtaining type—2 minimal forbidden graph, every vertex in a cycle is merged
with vertices fixed with label 0 in other building blocks or with at most one
fixed vertex label 1/2. Similarly every vertex of a 1-zone is merged with vertex
of a building graph with fixed label 0. These operations will result in a set of
forbidden graphs from which we can find another set of minimal forbidden
graph. For obtaining type—3 minimal forbidden graph, a few (two or three)
vertices in a cycle are merged with a vertex of bulding graph with label 1/2
or 1. Similarly at most two non-extremal vertices of a 1-zone is merged with
vertices of building graphs with fixed label 1/2 or 1. Care should be taken that
sum of these labels is just greater than 1 in case of cycles and 1/2 in case of
1—zones. These operations will result in a set of forbidden graphs from which
we can find another set of minimal forbidden graph.

Remark 9 For the purposes of this article, the above description suffices, hence
there is no need of explicitly finding the minimal forbidden graph. Further-
more, this list is infinite (ref Fig 9).

Remark 10 In type—1 minimal forbidden graph, a cut vertex is forced to have
different labelings in different blocks. In type-2 (type—3) minimal forbidden
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Fig. 9 Infinite Minimal Forbidden Subgraphs for VCS

graph a cycle is forced to have a total labeling less (greater) than 1, or a 1-zone
is forced to have a total labeling less (greater) than 1/2.

Now we shall extend Corollary 1 to VCS graphs.
Theorem 4 Any VCS graph can have a {0,1/2,1}~labeling.

Proof Due to Corollary 1 we have this result for biconnected graphs (blocks).
We just have to analyse the cut vertices. Since the graph is VCS, it does not
contain any of the three types of the forbidden graphs described above. So if
the cut vertex is forced (i.e. there is no other labeling with a different label
to it) to have different labels in both blocks, then it contains type—1 minimal
forbidden graph. Similarly for every {0,1/2,1}-labeling, if there are type—2
and type—3 minimal forbidden graph then such a can be found in the general
labeling, prohibiting it to be VCS. O

5 Graphs To VCS

Using the techniques in the proofs of Lemma 4 and 5, we can find a charac-
terization for VCS graphs — in a similar fashion as in ECS graphs in Section
3. However even if the blocks are VCS, on joining them at cut vertices the
VCS property might be lost, as in the case where a cut vertex is forced to
have different labels in two of its blocks. So care must be taken while join-
ing such blocks. The minimal forbidden graph for VCS graphs obtained in
Section 4 takes care of this. Theorem 1 gives a structural characterization of
VCS blocks, and Theorem 3 gives a minimal forbidden graph characteriza-
tion of VCS blocks. Using these theorems and the minimal forbidden graph
developed in Section 4, we have the following theorem.

Theorem 5 A graph is VOS iff each of its blocks are VCS, and do not contain
any of the forbidden graphs described above in Section 4.

Proof If all blocks of a graph are VCS, then joining these blocks at the cut
vertices to form the original graph does not add any new cycle. However it must
be ensured that the cut vertices have the same label in all blocks containing
that cut vertex. If this occurs then one of the minimal forbidden graph as
described in Section 4 occurs, else the graph is a VCS. O
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6 Graph Characteristics

In this section we look into various characteristics of VCS and ECS (also
VECS) graphs like the chromatic number, clique number, edge chromatic num-
ber, Hamiltonianity, length of largest cycle and planarity (also feedback vertex
cover for biconnected VCS and ECS graphs).

Lemma 7 The chromatic number of VCS and ECS (also VECS) graphs is
less than or equal to 3.

Proof The chromatic number of a block which is a cycle or cycle with a chord
is less than or equal to 3, equality holds if an odd cycle is present. When the
block is a cycle with a path, we can inductively prove that it is 3—colorable
due to the presence of a vertex with degree 2. On joining the blocks together
appropriate shuffling of the colors can be done because of the block—cutpoint
graph is a tree, and hence the chromatic number is preserved. O

Remark 11 The problems 3—CHROMATIC, k—CHROMATIC and CHROMATIC prob-
lems are polynomial. To solve CHROMATIC; a graph will have x = 3 if and only

if it does not have xy = 1 or 2. So if there is an odd cycle, x = 3, else x = 2

(presence of an edge is obvious).

Lemma 8 The clique number of VCS and ECS (also VECS) graphs is less
than or equal to 3.

Proof Since K, is a forbidden subgraph for ECS graphs (and hence for VCS
graphs), the maximum clique that can occur in such graphs is a triangle. This
occurs when there is a block which is a triangle or there is a chord between
two vertices at distance 2 on a cycle. Furthermore, the clique size remains
unaffected on joining the blocks. O

Remark 12 This leads to a polynomial solution to the k—CLIQUE and CLIQUE
problems.

Lemma 9 The edge chromatic number of VCS and ECS (also VECS) graphs
is A except when it is a odd cycle where it is 3.

Proof First we deal with VCS graphs. When the block is an even cycle the
edge chromatic number X’ is 2 and for an odd cycle it is 3. For a block which is
a cycle with a chord, if the chord is unique we already have A > 3, so we have
a A—edge coloring. If there are many chords, they must have a common vertex
and this vertex has the highest degree, so there exists a A—edge coloring. For
the case when the block is a chordless graph i.e. cycle with a path, due to
Remark 4 we have a ordering of 1-zones that are added to get the block. We
prove a A—edge coloring by induction. Consider the last 1-zone added. The
only problem that appears in obtaining a A—edge coloring is when this 1-zone
has even number of edges and both the vertices it is going to join to has the
maximum degree. Without loss of generality it can be assumed to have 2 edges
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i.e. the smallest 1-zone. The crucial fact is that every 1-zone has a vertex of
degree 2. So on joining this 1—zone to the A — 1 degree vertices, it would seem
that we might need A + 1 colors. But due to the existence of the vertex of
degree 2 in the other 1-zone, we can swap one color from one of the A—1 colors
with the new A color, in one of the two edges of the 1-zone added, to get a
A-edge coloring. On joining blocks at a cut vertex if the resultant maximum
degree A is at the cut vertex we can accordingly introduce new colors in one
of the blocks. Since the block—cutpoint graph is a tree, appropriate swapping
and renaming the colors of edges will still result in a A-edge coloring.

Now for ECS graphs the only difference is the possibility of parallel chords,
along with the parallel paths. However in such a case also there exists a vertex
with degree 2 in the block. Again we prove by induction. Assume the statement
when this vertex is removed. Now on adding this degree 2 vertex, problem
occurs if its neighbours have the degree A — 1. We also assume that they are
connected by a chord, else it is already discussed above. If A = 3, we have
a 3—edge coloring, else we claim there is at least a path joining these two
vertices. This is because if other chords are incident to one of these vertices
then the other vertex cannot have degree A — 1; so it has to be paths. We
will have a degree 2 vertex in such a path. If its neighbours are not the A — 1
degree vertices we are done (consider this degree 2 vertex instead of our initial
choice). If its neighbours are the A — 1 degree vertices we proceed using the
argument for the VCS case. Rest of the proof of the VCS part also applies
here, resulting in a A-edge coloring. a

Lemma 10 All the VCS and ECS (also VECS) graphs are planar.

Proof Since all the three building blocks are planar, the resultant VCS and
ECS graphs are planar. O

Lemma 11 The VCS and ECS (also VECS) graphs are Hamiltonian iff they
are cycle or cycle with only chords.

Proof Clearly a cycle and a cycle with only chords are Hamiltonian. Now we
rule out the other possibilities. Since the graph has to be biconnected in order
to be Hamiltonian we just have to rule out the following: (1) there are paths
in cycles with chords and (2) chordless graphs. In both of these cases there is
always a path whose internal vertices always stays within a cycle, hence such
graphs are not Hamiltonian. ad

Lemma 12 The length of the longest cycle in VCS and ECS (also VECS)

graphs can be found in polynomial time.

Proof Clearly the longest cycle lies in a block, so we have to find the maximum
of longest cycles in each block. We consider VCS graphs first. For blocks which
are cycle it is trivial. For blocks that are cycles with chords, find the longest
path in the tree obtained after removing the common vertex of all cycles (i.e.
vertex with maximum degree) add 2 to it. This can be done in polynomial
time. In the case where the block is a chordless graph i.e. cycle with a path,
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the number of cycles is exactly (;) [ref. Remark 5] where ¢ is the number of
vertices with label 1/2 in a {0,1/2, 1}-labeling i.e. number of 1-zones in the
block. Since t is at most n, — 2, the longest cycle in this block can be found
in polynomial time. So the problem of determining the length of the longest
cycle in a VCS graph is polynomial.

For ECS graphs, the only difference is presence of some parallel chords.
We claim that these chords are not part of the longest cycle. If one of these
chords is a part of the longest cycle we can always replace it by a longer path,
resulting in a longer cycle. Rest of the proof is similar to the VCS part above.
So the problem of determining the length of the longest cycle in a ECS graph
is also polynomial. ad

Remark 13 For a chordless block Remark 5 addresses on how to find these
cycles. If (u;,l;) are the two neighbours (upper and lower) of a 1/2 labeled
vertex v; then the problem of finding the length of longest cycle in this block
can be found by evaluating 4 + max; jecjo,q d(ui, u;) + d(ls, ;).

Lemma 13 The feedback vertex cover for biconnected VCS and biconnected
ECS (also VECS) graphs can be found in polynomial time.

Proof The feedback vertex set is the minimum set of vertices S whose removal
makes the graph acyclic. As usual we tackle this problem beginning with the
chordless blocks. Consider an embedding of the biconnected VCS graph in
the plane as shown in Fig 3, and consider its 1/2—labeled vertices. For each
1/2—labeled vertex taken left to right, consider the extremities of the 1-zone
for the 1/2—labeled vertex. If both of them do not lie on the outer cycle, then
add the extremity with higher degree to S and delete it from the graph. For
the rest part of this proof whenever we delete a vertex we also delete all the cut
vertices with degree one formed in the process till no such degree one vertex
remains. After one left-right scan we have 1/2—labeled vertices such that at
least one of the extremities of its 1-zone is on the outer cycle of the remaining
block. Also the original block now might also be broken down into different
components, which we can consider iteratively. If only one of the extremity is
on the cycle, it must be noted that it will have a higher degree compared to
the other extremity. If both extremities are on the outer cycle, then they have
the same degree. Now we do another left-right scan. Consider the extremities
of each 1/2—labeled vertex. If only one of the extremity is on the cycle, then
add this vertex to S and delete it from the graph. If both extremities are on
the outer cycle and their degree is greater than 3, add one of these vertices
to S and delete it. After this second left-right scan, we are left with a outer
cycle and only parallel paths. In the third scan, add one of each extremity of
the fourth 1-zone, sixth 1-zone and so on till the third 1-zone from the right,
to S and delete them. Also add one of each extremity of the leftmost and
rightmost 1-zone to S. Now S is the feedback vertex cover of this block. In
the first two scans, every vertex we added to S belongs to the feedback vertex
cover, else at least one cycle will be left out. In the third scan we have to add
one from leftmost and rightmost extremities, else the leftmost and rightmost
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cycle will be left out. For the rest if we add one vertex less to S, then there
will be two consecutive 1-zones from which no vertex is in .S, so a cycle is left
out. This proves the minimality of S. If block is a cycle with chord, or a cycle,
removing one vertex suffices. This gives us the minimal feedback vertex cover
of biconnected VCS graphs. For biconnected ECS graphs a similar technique
can be applied.

7 Conclusion

In this article, we explored various types of cycle stochastic graphs and the
connections between them. We gave structure theorems for ECS graphs and
biconnected VCS graphs. We also provided an explicit minimal forbidden sub-
graph characterization for biconnected VCS graphs and then described such
a characterization for VCS graphs. Then we use these structural characteriza-
tion to solve some (usually) hard problems in polynomial time in these graph
classes.

One of the aspects of VCS graphs that is not covered here is to find an
algorithm to join the VCS blocks to form the VCS graph. As we saw in Section
4, that even if the blocks are VCS the whole graph may not be (e.g. due to
the different labels of cut vertices in different blocks). In order to determine
whether a VCS graph can be built from VCS blocks, we can make use of
Theorem 4, dealing with just three labels. However we suspect, that in a worst
case scenario this algorithm would be exponential (3#cut vertices  30(n)),
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