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Abstract : We consider a random number Nn of m-dependent random variables Xk

with a common distribution and the partial sums SNn =
∑Nn

j=1Xj, where the random

variable Nn is independent of the sequence of random variables {Xk, k ≥ 1} for every

n ≥ 1. Under certain conditions on the random variables Xk and Nn, we obtain the

limit distribution of the sequence SNn and the corresponding rate of convergence after

suitable normalization.
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1 Introduction

Limit theorems for random sums have been studied for about 70 years now. In their

book “Random Summation” Gnedenko and Korolev (1996) discussed most of the limit

theoretic results concerning random sums of independent random variables (r.v.s) such

as random central limit theorem and their importance in various disciplines such as

financial mathematics and insurance. The order of approximation is a topic of interest

in statistics and initial work in this direction was done by Tomko (1971), Sreehari

(1975), and Landers and Rogge (1976, 1988) among others and the problem and its

variants appear to be of interest even now (see, Barbour and Xia (2006) and Sunklodas
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(2014) and the references therein).

Investigation of the random central limit theorem for various types of dependent

r.v.s has been going on simultaneously and early results can be found in Billingsley

(1968), Prakasa Rao (1969) and Sreehari (1968) and the problem is still getting the

attention of research workers(see, for example Shang (2012) and Is.lak (2013)). The

order of approximation in the random central limit theorem for certain types of depen-

dent r.v.s has also received some attention (see Prakasa Rao (1974, 1975)). The aim

of this paper is to investigate the order of approximation in the random central limit

theorem for a sequence of stationary m-dependent r.v.s.

Let the sequence {Xn} be a stationary sequence ofm-dependent r.v.s with E(X1) =

µ, V (X1) = E(X1 − µ)2 = σ2 < ∞; Cov(X1, X1+j) = aj and let σ2 + 2
∑m

j=1 aj > 0.

Then, it is known (see Diananda (1955) ) that

Sn − E(Sn)√
V (Sn)

D→ Z1(1. 1)

as n → ∞, where Z1 is the standard normal r.v. Let the sequence {Nn} be a sequence

of non-negative integer valued r.v.s such that the r.v. Nn is independent of the sequence

{Xk} for every n ≥ 1 and such that the r.v. Nn, properly normalized, converges in

distribution to a r.v. Z2 defined in Section 2. We prove that

SNn − E(SNn)√
V (SNn)

D→ Z∗(1. 2)

as n → ∞ where Z∗ is a mixture of Z1 and Z2 and also obtain the rate of convergence

of this limit. It will be noted that, if Z2 is also a standard normal r.v., then Z∗ is also

standard normal and marginally different from the limit r.v. given in Is.lak (2013).

In Section 2, we give details of the assumptions made and prove some lemmas. The

main result is given in Section 3.
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2 Assumptions and Lemmas

For the the sequence of r.v.s {Xk} , we assume that β2 = σ2+2
∑m

j=1 aj > 0. It is easy

to check that (see Is.lak (2013))

V (Sn) = nσ2 + 2n
m∑
j=1

ajI(n ≥ j + 1)− 2
m∑
j=1

jajI(n ≥ j + 1).(2. 1)

where I(A) denotes the indicator function of the set A. Observe that, for n > m,

V (Sn) = nσ2 + 2n
m∑
j=1

aj − 2
m∑
j=1

jaj = nβ2(n),

say, and that β2(n) → β2 as n → ∞.

We now recall a result on the rate of convergence in the limit theorem given in (1.

1)

Theorem 2.1 (Chen and Shao, 2004) If E|X1|2+δ < ∞ for some 0 < δ ≤ 1, then

sup
x

∣∣∣∣P (Sn − ESn ≤ x
√
V (Sn))− Φ(x)

∣∣∣∣ ≤ 75(10m+ 1)1+δnE|X1|2+δ

[nσ2 + 2n
∑m

j=1 aj − 2
∑m

j=1 jaj]
1+δ/2

.

We assume that ENn

n
→ ν > 0 as n → ∞ and V (Nn)

n
→ τ 2 < ∞ as n → ∞ and that,

for large n,

sup
x

∣∣∣∣P (Nn − ENn ≤ x
√
V (Nn)) − G(x)

∣∣∣∣ ≤ ϵn(2. 2)

where G(.) is a continuous distribution function (d.f.) satisfying the condition that

there exists a constant C > 0 such that

sup
x

|G(x+ y)−G(x)| < Cy, y > 0

and ϵn → 0 as n → ∞. In view of (2. 2) and the assumptions regarding E(Nn) and

V (Nn)
Nn − ENn

V (Nn)
P→ 0(2. 3)

as n → ∞. Furthermore, we have the following result concerning V (SNn).
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Lemma 2.2 Let pn,k = P (Nn = k), k = 0, 1, . . . . Under the conditions stated above,

V (SNn) = E(Nn)

σ2 + 2
m∑
j=1

aj

− 2
m∑
j=1

jaj + µ2V (Nn) + αn(m)

where

αn(m) =
m∑
k=0

2kpn,k
m∑
j=1

aj {I(k ≥ j + 1)− 1} −
m∑
k=0

2pn,k
m∑
j=1

jaj {I(k ≥ j + 1)− 1} .

Proof : Note that

V (SNn) = E (V (SNn |Nn)) + V (E(SNn |Nn))

=
∞∑
k=0

pn,k

k
σ2 + 2

m∑
j=1

ajI(k ≥ j + 1)

− 2
m∑
j=1

jajI(k ≥ j + 1)

+ V (µNn).

Note that, for k > m ≥ j, I(k ≥ j + 1) = 1, and we have

V (SNn) = σ2ENn + µ2V (Nn) + 2
m∑
k=0

kpn,k
m∑
j=1

ajI(k ≥ j + 1) + 2
∞∑

k=m+1

kpn,k
m∑
j=1

aj

−2
m∑
k=0

pn,k
m∑
j=1

jajI(k ≥ j + 1)− 2
∞∑

k=m+1

pn,k
m∑
j=1

jaj

= ENn

σ2 + 2
m∑
j=1

aj

− 2
m∑
j=1

jaj + µ2V (Nn) + αn(m)

where

αn(m) = 2
m∑
k=0

kpn,k
m∑
j=1

aj(I(k ≥ j + 1)− 1)− 2
m∑
k=0

pn,k
m∑
j=1

jaj(I(k ≥ j + 1)− 1).

Remarks : Observe that the sequence |αn(m)| is bounded in n and hence αn(m)
n

→ 0

as n → ∞.

We now prove two lemmas which are of independent interest.
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Lemma 2.3 Let U = V + tW, t ∈ R and G be a d.f. Then, for all z ∈ R and δ > 0,

|P (U ≤ z)−G(z)| < sup
x

|P (V ≤ x)−G(x)|+ sup
x

|G(x)−G(x+ δt)|+ P (|W | > δ).

Proof: Let t > 0. Then, for any δ > 0,

P (U ≤ z) ≤ P (U ≤ z, |W | ≤ δ) + P (|W | > δ)

≤ P (V ≤ z + tδ) + P (|W | > δ).

Then, for all z ∈ R,

(2. 4)

P (U ≤ z)−G(z) ≤ |P (V ≤ z + tδ)−G(z + tδ)|+ |G(z + tδ)−G(z)|+ P (|W | > δ)

≤ sup
x

|P (V ≤ x)−G(x)|+ |G(z + tδ)−G(z)|+ P (|W | > δ).

Again

P (U ≤ z) ≥ P (U ≤ z, |W | ≤ δ)

≥ P (V ≤ z − tδ)− P (|W | > δ).

Then, for all z ∈ R,

(2. 5)

G(z)− P (U ≤ z) ≤ sup
x

|P (V ≤ x)−G(x)|+ |G(z − tδ)−G(z)|+ P (|W | > δ).

From the inequalities (2.4) and (2.5), we get the required result for t > 0 and, on

similar lines, the inequalities can be checked for t ≤ 0 completing the proof of the

lemma.

Lemma 2.4 Let Un and U be r.v.s with the d.f. H(x) of U satisfying the condition

that there exists a constant α > 0 such that

sup
x

|H(x+ θ)−H(x)| ≤ αθ, θ > 0

and V be a r.v. independent of r.v.s Un and U with E|V | < ∞. Let g : R → R. Then,

for any constant c and δ > 0, and, for all z ∈ R

|P (Un + V g(Un) ≤ z)− P (U + cV ≤ z)|

≤ αδ E|V |+ sup
x

|P (Un ≤ x)− P (U ≤ x)|+ P (|g(Un)− c| > δ).
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Proof : Denote the d.f. of V by H. Then

P (Un+V g(Un) ≤ z)−P (U+cV ≤ z) =
∫
[P (Un + vg(Un) ≤ z)− P (U + cv ≤ z)] dH(v)

(2. 6)

Suppose v > 0. Then, for δ > 0,

P (Un + v g(Un) ≤ z) ≤ P (Un + vg(Un) ≤ z, |g(Un)− c| ≤ δ)

+P (|g(Un)− c| > δ)

≤ P (Un ≤ z − v(c− δ)) + P (|g(Un)− c| > δ).

Hence

P (Un + v g(Un) ≤ z)− P (U + cv ≤ z) ≤ |P (Un + vc ≤ z + vδ)− P (U + vc ≤ z + vδ)|

+|P (U + vc ≤ z + vδ)− P (U + vc ≤ z)|

+P (|g(Un)− c| > δ).

Hence, for v > 0, there exists a constant α > 0 such that

P (Un + v g(Un) ≤ z)− P (U + cv ≤ z) ≤ sup
x

|P (Un + cv ≤ x)− P (U + cv ≤ x)|

+αvδ + P (|g(Un)− c| > δ).

Similarly we get that

P (Un + v g(Un) ≤ z)− P (U + cv ≤ z) ≥ − sup
x

|P (Un + vc ≤ x)− P (U + vc ≤ x)|

−αvδ − P (|g(Un)− c| > δ)

so that, for all v > 0,

|P (Un + vg(Un) ≤ z)− P (U + cv ≤ z)| ≤ sup
x

|P (Un + cv ≤ x)− P (U + cv ≤ x)|

+αvδ + P (|g(Un)− c| > δ).

Similar arguments will prove that the above inequalities holds with −vδ in place of vδ

for v ≤ 0 . Then, from (2.6), it follows that

|P (Un + V g(Un) ≤ z)− P (U + cV ≤ z)| ≤ sup
x

|P (Un ≤ x)− P (U ≤ x)|

+αδE|V |+ P (|g(Un)− c| > δ).
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3 Main Result

Before we state and prove the main result, we need to introduce some notation.

For any two random variables U and V, let

dK(U, V ) = sup
x

|P (U ≤ x)− P (V ≤ x)|

denote the Kolmogorov distance between the d.f.s of U and V . Define

Tn =
SNn − ESNn√

V (SNn)
=

SNn − µNn√
V (SNn)

+
(Nn − ENn)µ√

V (SNn)

and

Tn(Z1) =

√
Nn

V (SNn)
β(Nn)Z1 +

(Nn − ENn)µ√
V (SNn)

where Z1 is a N(0, 1) r.v. independent of Nn. Furthermore, define

T ′
n(Z1) =

√
Nn

V (SNn)
βZ1 +

(Nn − ENn)µ√
V (SNn)

and

T (Z1, Z2) =
µτ√

νβ2 + µ2τ 2

[
β
√
ν

µτ
Z1 + Z2

]
where Z2 follows the d.f. G given at (2. 2) and is independent of Z1. The r.v. T (Z1, Z2)

is the limit r.v. Z∗ in (1. 2).

In the following discussion, C with or without subscript will denote a positive con-

stant.

Theorem 3.1 Let {Xn} be a stationary sequence of m-dependent r.v.s with EX1 =

µ, V (X1) = σ2, Cov(X1, X1+j) = aj, E|X1|2+δ < ∞ for some δ > 0. Let {Nn} be

a sequence of non-negative integer valued r.v.s such that Nn is independent of {Xk}
for every n ≥ 1 and satisfying (2. 2). Let 0 < θ < 1 and δn = n−θ be a sequence of
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positive numbers. Then, there exists a constant C > 0, such that, for n large,

dK(Tn, T (Z1, Z2)) = sup
x

∣∣∣∣∣∣P
SNn − E(SNn)√

V (SNn)
≤ x

− P (T (Z1, Z2) ≤ x)

∣∣∣∣∣∣
≤ dK

Nn − ENn√
V (Nn)

, Z2

+ Cn−min(θ, δ/2)

+P

(∣∣∣∣∣
√

Nn

V (SNn)
−

√
ν√

νβ2 + µ2τ 2

∣∣∣∣∣ > δn

)
.

Proof : We obtain upper bounds for dK(Tn, Tn(Z1)), dK(T
′
n(Z1), T (Z1, Z2)) and then

use the second estimate to obtain an upper bound for the distance dK(Tn(Z1), T (Z1, Z2)).

Note that

Tn =
SNn − µNn√

V (SNn)
+

(Nn − ENn)µ√
V (Nn)

√√√√ V (Nn)

V (SNn)
.

Let Bn = {|Nn − nν| ≤ nν/2} and B′
n denote its compliment. Then

dK(Tn, Tn(Z1)) ≤ P (B′
n) +

∑
k∈Bn

pn,k sup
x

|P (Tn ≤ x|Nn = k)− P (Tn(Z1) ≤ x|Nn = k)|

= P (B′
n) +

∑
k∈Bn

pn,k sup
x

∣∣∣∣∣∣P
Sk − kµ

β(k)
√
k
≤ 1

β(k)

√
V (SNn)

k

x− (k − ENn)µ√
V (SNn)


∣∣∣∣∣∣

−P

Z1 ≤
1

β(k)

√
V (SNn)

k

x− (k − ENn)µ√
V (SNn)




≤ P (B′
n) +

∑
k∈Bn

pn,k sup
u

∣∣∣∣∣P
(
Sk − kµ

β(k)
√
k
≤ u

)
− P (Z1 ≤ u)

∣∣∣∣∣ .

Then, by Chebyshev’s inequality and bound given in Theorem 2.1, it follows that, for

n sufficiently large

dK(Tn, Tn(Z1)) ≤
4V (Nn)

(ENn)2
+

∑
k>ENn/2

pn,k
C1kE|X1|2+δ

(
√
kβ(k))2+δ

<
C2

nδ/2
.(3. 1)
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Next we estimate dK(T
′
n(Z1), T (Z1, Z2)). It can be checked that

Nn

V (SNn)
P→ ν

νβ2 + µ2τ 2

as n → ∞. Furthermore, since V (Nn)
V (SNn )

→ τ2

νβ2+µ2τ2
as n → ∞,

Nn − ENn√
V (Nn)

µ
√
V (Nn)√
V (SNn)

D→ µτ√
νβ2 + µ2τ 2

Z2(3. 2)

as n → ∞. We use the Lemma 2.4 with Un = (Nn−ENn)µ√
V (SNn )

, V = Z1, and g(Un) =

β
√

Nn

V (SNn )
to get that

dK(T
′
n(Z1), T (Z1, Z2)) ≤ P

(∣∣∣∣∣
√

Nn

V (SNn)
−
√

ν

νβ2 + µ2τ 2

∣∣∣∣∣ > δn

)

+αδn E|Z1|+ sup
x

∣∣∣∣∣∣P
Nn − ENn√

V (Nn)
≤ x

− P (Z2 ≤ x)

∣∣∣∣∣∣ .(3. 3)

Finally, we estimate dK(Tn(Z1), T (Z1, Z2)). Observe that

Tn(Z1)− T ′
n(Z1) = Z1

√
Nn

V (SNn)
(β(Nn)− β).

and √
Nn(β(Nn)− β) = −2

∑m
j=1 jaj√

n

√
n√

Nn[β(Nn) + β]
P→ 0(3. 4)

because Nn

n

P→ ν and β(Nn)
P→ β as n → ∞. Consider

P

(∣∣∣∣∣
√

Nn

V (SNn)
(β(Nn)− β)

∣∣∣∣∣ > δn

)
≤ P (B′

n) + P

(
Bn;

C3√
Nn[β(Nn) + β]

> δn
√
V (SNn)

)

= P (B′
n) + P

(
Bn;Nn(β(Nn) + β)2 <

C4

δ2nV (SNN
)

)

≤ P (B′
n) + P

(
nν

2
≤ Nn ≤ 3nν

2
;Nn < C5n

2θ−1
)

= P (B′
n) <

C6

n
(3. 5)
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because the second probability bound above is zero for 0 < θ < 1. Consider

dK(Tn(Z1), T (Z1, Z2)) =
∫ ∞

−∞
sup
x

|P (Tn(z) ≤ x)− P (T (z, Z2) ≤ x)| dΦ(z)

=
∫ ∞

−∞
sup
x

∣∣∣∣∣P
(
T ′
n(z) + z

√
Nn

V (SNn)
(β(Nn)− β) ≤ x)

)
− P (T (z, Z2) ≤ x)

∣∣∣∣∣ dΦ(z).
Using the Lemma 2.3 with V = T ′

n(z), t = z,W =
√

Nn

V (SNn )
(β(Nn) − β), and (3.5), it

follows that

dK(Tn(Z1), T (Z1, Z2)) ≤ P

(∣∣∣∣∣
√

Nn

V (SNn)
(β(Nn)− β)

∣∣∣∣∣ > δn

)

+
∫ ∞

−∞
[sup

x
|P (T ′

n(z) ≤ x)− P (T (z, Z2) ≤ x)|]dΦ(z)

+
∫ ∞

−∞
sup
x

|P (T (z, Z2) ≤ x)− P (T (z, Z2) ≤ x+ δnz)|dΦ(z)

≤ sup
x

|P (T ′
n(Z1) ≤ x)− P (T (Z1, Z2) ≤ x)|+

√
νβ2 + µ2τ 2

µτ
δnE|Z1|+

C7

n
.

Using (3.3), it follows that

dK(Tn(Z1), T (Z1, Z2)) ≤
C7

n
+ αδnE|Z1|+

√
νβ2 + µ2τ 2

µτ
δnE|Z1|

+sup
x

∣∣∣∣∣∣P
Nn − ENn√

V (Nn)
≤ x

− P (Z2 ≤ x)

∣∣∣∣∣∣
+P

(∣∣∣∣∣
√

Nn

V (SNn)
−
√

ν

νβ2 + µ2τ 2

∣∣∣∣∣ > δn

)
.(3. 6)

Thus, from (3. 1) and (3. 6), we get that

dK(Tn, T (Z1, Z2)) ≤ dK

Nn − ENn√
V (Nn)

, Z2

+ C8n
−δ/2 + C9δn

+P

(∣∣∣∣∣
√

Nn

V (SNn)
−
√

ν

νβ2 + µ2τ 2

∣∣∣∣∣ > δn

)
.
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Hence

dK(Tn, Z
∗) < ϵn + C10n

−min(θ,δ/2) + P

(∣∣∣∣∣
√

Nn

V (SNn)
−
√

ν

νβ2 + µ2τ 2

∣∣∣∣∣ > δn

)
(3. 7)

where ϵn is given in the equation (2.2).

Remarks :1. Is.lak (2013) proved the random central limit theorem part of the above

theorem for the particular case when Nn is the sum of n independent non-negative

integer-valued r.v.s with a common distribution having finite variance τ 2. In that case,

ϵn = n−1/2.

2. Shang (2012) proved the random central limit theorem for stationary m-dependent

variables. Shang’s condition on the random index Nn is weaker than ours but we do

not need the maximal inequality condition that Shang (2013) assumed. Incidentally,

some of the questions raised by Shang (2013) in the concluding remarks are already

answered in Sreehari (1968).
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