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Abstract: We obtain some random fixed point theorems for random mappings. We use the

orbits of the random mappings to show the existence of a fixed point for a class of random

mappings and also establish the measurability of solutions obtained through such random

mappings. Some applications of these theorems to random integral equations are given.
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1 Introduction

Random integral equations and random differential inequalities have applications in modelling

physical, engineering , biological, social and system sciences. Random integral equations arise

in the study of linear and non-linear differential systems with random parameters. Bharucha-

Reid (1972) investigated results such as the existence and the uniqueness of solutions for

random linear integral equations such as Fredholm and Volterra integral equations with ran-

dom forcing functions or with random kernels and random non-linear integral equations of

Volterra type wirh random kernels. Ladde and Laksmikantam (1980) studied random differ-

ential inequalities and random comparison principles with applications to differential systems

1Part of this work was done jointly with Mr. V. Varatharajaperumal at the Indian Statistical Institute, New

Delhi. The work is completed with support by the grants under the scheme ”Ramanujan Chair Professor” from

the Ministry of Statistics and Programme Implementation, Government of India (M12012/15 (170)/2008-SSD

dated 8/9/09), the Government of Andhra Pradesh (6292/Plg. XVIII dated 17/01/08) and the Department of

Science and Technology, Government of India (SR/S4/MS:516/07 dated 21/04/08) at the CR Rao advanced

Institute of Mathematics, Statistics and Computer Science, Hyderabad, India. We dedicate this work to Mr.

V. Varatharajaperumal.
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involving random behavior such as random forcing function or random initial condition or

random coefficients. Prakasa Rao and Rama Mohana Rao (1972, 1973) discussed existence

and uniqueness of solutions for stochastic integral equations of mixed type among others.

Fixed point theorems play a major role in establishing the existence and uniqueness of solu-

tions for integral equations and differentail systems. A survey of fixed point theorems useful

for proving the existence and uniqueness of solutions for random integral equation or random

differential equations, known as random fixed point theorems in probabilistic frame work, is

given in Bharucha-Reid (1976). Prakasa Rao and Rama Mohana Rao (1973) obtained a

probabilistic analogue of the Krasnosel’skii’s fixed point theorem. Random algebraic equa-

tions are investigated in Bharucha-Reid (1970) and random difference equations are studied

in Bharucha-Reid (1977). More recent work on random fixed points of completely random

operators is presented in Dang Hung Thang and Pham The Anh (2013).

We establish some fixed point theorems for random mappings. We will use orbits to

study the existence of a fixed point for a class of random mappings and also establish the

measurability of solutions obtained through such random mappings. Some applications of

these theorems for random integral equations are given.

2 Preliminaries

We first state few definitions.

Definition 2.1: Let (X , τ) be a topological space which is Hausdorff. Let T : X → X be a

map. Let x ∈ X . The set {Tx, T 2x, , . . .} is called the orbit of x under the map T. The map

T is called orbitally regular if it satisfies the following conditions:

(R1) : If lim
n
Tnx0 = x1, then lim

n
T (Tnx0) = Tx1, for all x0, x1 ∈ X

and

(R2) : if x0 ̸= Tx0, then x0 does not belong to the set {T 2x0, T 3x0, . . .}

where A denotes the closure of the set A.

Definition 2.2: Let A be a bounded subset of a metric space (Y, d) with a metric d(., .). Then

the measure of non-compactness of the set A (with respect to the space (Y, d)) is defined to be

γY (A) = inf{ϵ > 0 : The set A can be covered by finitely many subsets of the metric space (Y, d)

with diameter ≤ ϵ}.
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It can be shown that the function γY (A) does not depend on the metric space (Y, d) in

the sense that Y and Z are metric spaces and A ⊂ Z ⊂ Y (the metric on Z being induced by

Y ), then γY (A) = γZ(A). Here after we write gamma(A) for γY (A). The measure γ(A) of

non-compactness of a set A has the following properties. Suppose A and B are subsets of a

metric space Y :

(i) If A ⊂ B, then γ(A) ≤ γ(B);

(ii) γ(A ∪B) = min(γ(A), γ(B));

(iii)γ(A) = γ(Ā);

In addition, suppose Y is a Banach space. Then

(iv) γ(co(A)) = γ(A) where co(A) denotes the convex hull of the set A;

(v) γ(A+B) = γ(A) + γ(B) where A+B = {a+ b : a ∈ A, b ∈ B};
(vi) γ(λA) = |λ|γ(A) for any λ ∈ R where λA = {λa : a ∈ A}. (vii) If the set A is precom-

pact, then γ(A) = 0.

For proof of these properties, see Nussbaum (1968).

Definition 2.3: Let (X , d) be a metric space. A map T : X → X is said to be a condensing

map if T is continuous and if C is any bounded closed subset of X , then γ(T (C)) ≤ γ(C). It is

said to be strictly condensing if there exists a constant 0 < k < 1, such that γ(T (C)) < k γ(C)

for any bounded closed subset C in the domain of T.

Definition 2.4: Let (Ω,B, P ) be a complete probability space and (X , ζ) be any measurable

space. Let T : Ω → X be a function from Ω into X . The function T is called an X -valued

random element if T−1E ∈ B for every E ∈ ζ.

Definition 2.5: Let (X , ζ) and (Y,Σ) be complete normed linear spaces with ζ and Σ the

associated Borel σ-algebras under the norm topology. Let T be a map from Ω×D(T ) into Y
where D(T ) ⊂ X .The function T is called a random operator if ψ(ω) = T (ω, x) is a Y-valued

random element for every x ∈ D(T ).

Definition 2.6: A random operator T is said to be bounded if there exists a positive random

variable M such that, for every x ∈ D(T ),

||T (ω, x)|| ≤M(ω)||x|| a.s. [P ].
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Definition 2.7: Suppose T is a random operator. The element ψ(ω) ∈ X is called a random

fixed point of the random operator T if T (ω, ψ(ω)) = ψ(ω) a.s. [P ] and ψ(ω) is an χ-valued

random element.

We will use the following results on measurable selections and measurability of multi-

valued relations or correspondences in the sequel.

Lemma 2.1: Let (Ω,B) be a measurable space and S be a complete separable metric space.

Suppose that Φ : Ω → S. Suppose Φ is a closed-valued correspondence such that the set

{ω ∈ Ω : Φ(ω) ∩ F ̸= ϕ} ∈ B for every closed subset F in S. Then there exists a measurable

mapping f of Ω into S such that f(ω) ∈ Φ(ω) for every ω ∈ Ω.

For a proof of this lemma, see Hildenbrand (1974). pp. 55-56.

As a consequence of the Lemma 2.1, the following results can be obtained.

Theorem 2.2: Let (Ω,B, µ) be a complete measure space and (S, ρ) be a complete separable

metric space. Let Φ : Ω → S be a closed-valued correspondence such that for every non-empty

closed subset F of S, the set Φ−1(F ) = {ω ∈ Ω : Φ(ω)∩F ̸= ϕ} ∈ B. Then the correspondence

Φ has a measurable selector.

Proof: Since the set S is a complete separable metric space, every closed subset of S is a

Gδ set and hence every open set is a Fσ set. Hence the property that Φ−1(F ) ∈ B for every

closed subset F implies that Φ−1(G) ∈ B for every open set G in S which is non-empty. The

existence of a measurable selector follows from the Kuratowski- Ryll Nardzewski theorem for

measurable selectors.

Theorem 2.3: Let (S, ρ) be a complete separable metric space and (Ω,B, µ) be a complete

measure space. Let Φ : Ω → S be a correspondence. Then the following statements are

equivalent:

(i) for every G open in S, the set Φ−1(G) = {ω ∈ Ω : Φ(ω) ∩G ̸= ϕ} belongs to B ; and

(ii) the function ρ(x,Φ(ω)) is a measurable function in ω for every x ∈ S.

Proof: Given a > 0, let Ba(x0) = {x : ρ(x0, x) < a} for any x0 ∈ S. The map ω → ρ(x,Φ(ω))

is measurable if and only if {ω : ρ(x,Φ(ω)) < a} ∈ B for any x ∈ S and a > 0. But

{ω ∈ Ω : ρ(x,Φ(ω)) < a} = {ω ∈ Ω : Φ(ω) ∩Ba(x) ̸= ϕ} = Φ−1(Ba(x)) ∈ B.
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Therefore the statements (i) and (ii) are equivalent.

The following result is a consequence of Theorems 2.2 and 2.3 and Lemma 2.1.

Theorem 2.4: Let (S, ρ) be a complete separable metric space and (Ω,B, µ) be a complete

measure space. Suppose the map ϕ : Ω → S is a correspondence and the space S is σ-

compact.Then the set Φ−1(C) = {ω ∈ Ω : C ∩ Φ(ω) ̸= ϕ} ∈ B for every closed set C in S if

and only if the function ω → ρ(x,Φ(ω)) is measurable in ω for every x ∈ S.

3 Some Fixed Point Theorems

Theorem 3.1: Let (X, τ) be a metric space. Suppose T : X → X is a map of X into itself

such that T is orbitally regular and there exists at least one point x0 ∈ X such that the set

Orb(T, x0) = {Tx0, . . . , Tnx0, . . .}

is compact. Then the map T has a fixed point.

Proof: Note that Orb(T, x) = {Tx, T 2x, . . .} and Orb(T, Tx) = {T 2x, T 3x, . . .} for any x ∈ X.

Hence, by the condition (R1) of orbital regularity, the set T (Orb(T, x)) ⊂ Orb(T, x) for x ∈ X.

Therefore the set Orb(T, x) is invariant under T. For any fixed x0 ∈ X, let K0 be the collection

of all closed subsets of Orb(T, x0) invariant under the map T. The set K0 is non-empty

since the set Orb(T, x0) ∈ K0. By the compactness of the set Orb(T, x0), the intersection of

the members of any sub-collection of K0 is non-empty and it is a non-empty closed subset

invariant under T and minimal in the sub-collection partially ordered by inclusion. Therefore,

by the Zorn’s lemma, there exists a non-empty minimal closed subset of Orb(T, x0) invariant

under T. Let this minimal closed set be K0. Then K0 is the closed subset of a compact set and

hence K0 is compact. Suppose z ∈ K0 and Tz ̸= z. By the orbital regularity condition (R2),

the element z does not belong to Orb(T, Tz). By invariance, Orb(T, Tz) ⊂ K0 and z does

not belong to Orb(T, Tz). Therefore Orb(T, Tz), is a proper subset of K0 and is invariant

under T. This violates the minimality of K0. Therefore Tz = z for z ∈ K0 and K0 ̸= ϕ. This

proves the existence of the fixed point for T.

Theorem 3.2: Let (X, τ) be a metric space and let T : X → X be a strict condensing map

such that (i) x ̸= Tx implies that x is not in Orb(T, Tx) and (ii) there exists x0 such that

Orb(T, x0) is bounded. Then the map T has a fixed point in Orb(T, Tx0).
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Proof : Since the map T is condensing, T is continuous. Hence the map T satisfies the

condition (R1) for orbital regularity. The condition (i) stated in the the theorem together

with this observation shows that T is orbitally regular. We can establish the existence of

the fixed point if we can show that the set Orb(T, x0) is compact. The set Orb(T, x0) is

closed by its definition and is bounded by the hypothesis. Let E0 = Orb(T, x0) and k be

the factor of the strict condensing map T where 0 < k < 1, that is, k γ(E0) > γ(TE0)

where γ(.) is the measure of non-compactness. Suppose γ(E0) > 0. Since TE0 = E0, we have

k γ(E0) > γ(E0) which is a contradiction since 0 < k < 1. Therefore γ(E0) = 0 and the set

E0 is closed. Therefore γ(E0) = 0 implies that E0 is compact. Hence, by Theorem 3.1, the

map T has a fixed point.

Theorem 3.3: In addition to the conditions of Theorem 3.2, suppose the space (X, τ) is a

complete separable metric space. Then there exists a sequence in Orb(T, x0) which converges

to a fixed point of the map T.

Proof: We have shown earlier that the set E0 = Orb(T, x0) is compact under the conditions

stated in Theorem 3.2. Hence there exists a convergent subsequence {Tnix0} ∈ E0. Since

the set E0 is complete, limi T
nix0 = z0 for some z0 ∈ E0. By the orbital regularity, it follows

that

T (lim
i
Tnix0) = Tz0,

but

T (lim
i
Tnix0) = lim

i
Tni+1x0 = z0.

Hence Tz0 = z0 which proves that z0 is a fixed point of the map T.

Theorem 3.4: (Darbo (1955)) Let E be a closed bounded set in a Banach space and the

map T : E → E be continuous. Let E1 be the convex closure of the set T (E), and En+1 be

the convex closure of the set T (En). Suppose the sequence γ(En) tends to zero as n → ∞.

Then the map T has a fixed point.

Proof: Since the set En is closed, convex and non-empty, it follows that En+1 ⊂ En. Let

K = ∩∞
n=1En. Then the set K is non-empty (by a theorem of Kurtowski). Furthermore the

set K is closed since each set En is closed. Note that 0 ≤ γ(K) ≤ γ(En) for all n ≥ 1. Since

γ(En) → 0 as n → ∞ by hypothesis, it follows that γ(K) = 0. Since K is closed, it follows

that K is compact. Since the map T is a continuous map from the compact set K into itself,

it follows that the map T has a fixed point by the Schauder’s theorem.
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Theorem 3.5: Let (X, ρ) be a metric space and T : X → X be a map such that

(i) ρ(Tx, Ty) < ρ(x, y), x ̸= y, x, y ∈ X;

and

(ii) there exists some z ∈ X such that Orb(T, z) is compact.

Then the map T has a fixed point.

Proof: Since the map T is a contraction, it is uniformly continuous and the orbital regularity

condition (R1) is satisfied. Suppose x0 ̸= Tx0. Then we have to show that x0 is not in

Orb(T, Tx0). Since the map T is a contraction, it is obvious that Tm is also a contraction for

every m ≥ 1. Suppose x0 = Tmx0 for some m ≥ 2. Then

ρ(x0, Tx0) = ρ(Tmx0, TT
mx0) < ρ(x0, Tx0)

which is a contradiction. Therefore the assumption that x0 = Tmx0 for some m ≥ 2 is not

possible. Now suppose that x0 is a limit point of the set E0 = Orb(T, Tx0). Then there exists

a sequence Tnix0, i ≥ 1 converging to x0 and

0 ≤ ρ(Tx0, x0) = lim
i
ρ(T (Tnix0), x0) = 0.

Therefore ρ(Tx0, x0) = 0 which is not possible because x0 ̸= Tx0. Hence x0 is not in the set

Orb(T, Tx0). Therefore the map T is orbitally regular. By hypothesis, there exists z ∈ X

such that Orb(T, z) is compact. Hence the map T has a fixed point by Theorem 3.1.

4 Random Fixed Point Theorems

We shall now prove some fixed point theorems for random mappings using the fixed point

theorems established earlier in Section 3 for non-random mappings.

We shall first prove a theorem for condensing random maps.

Theorem 4.1: Let (Ω,B, µ) be a complete probability space and X be a separable Banach

space. Suppose E is a closed convex subset of X and T : Ω×E → E is a strictly condensing

random mapping. Further suppose that the set {T (ω, x) : x ∈ E} is bounded for every ω ∈ Ω.

Then the random operator T has a random fixed point.

We will now prove few lemmas which will be used in the proof of Theorem 4.1.

Lemma 4.2: Suppose the hypothesis stated in Theorem 4.1 holds. Let I(ω) = {x ∈ X :

T (ω, x) = x} for any ω ∈ Ω. Then the set I(ω) is closed and compact.
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Proof: We shall first show that the set I(ω) is non-empty. Let ω be fixed and let Tω = T0.

The operator T0 is a bounded and strictly condensing map by hypothesis. Let E1 = T0(E).

Then, by the continuity of the operator T0, it follows that the set E1 is closed and it is

bounded by hypothesis. Hence the measure of non-compactness of the set E1, viz.,γ(E1), is

defined. Let E2 = T0(E1) and, in general, let En = T0(En−1). Since the operator T0 is a

strictly condensing map, it follows that there exists 0 < k < 1, depending on ω, such that

γ(En) < k γ(En−1), n ≥ 2.

Hence

0 ≤ γ(En) ≤ kn−1 γ(E1)

which implies that γ(En) → 0 as n → ∞. Since the family {En, n ≥ 1} is a decreasing

sequence of closed bounded non-empty sets such that γ(En) → 0, it follows that the set ∩En

is non-empty and compact by Kuratowski’s theorem for complete metric spaces. Let

K0 = ∩∞
n=1En.

Then the set K0 is the minimal closed subset invariant under the operator T0. Furthermore

the set K0 is compact since γ(K0) = 0. But the map T0 : K0 → K0 is a continuous map.

Hence the operator T0 has a fixed point which shows that the set I(ω) is non-empty. We will

now prove that the set I(ω) is closed and compact. Let {xn} be a sequence in I(ω) such that

xn → x0 in norm as n→ ∞. Then

||T0x0 − x0|| = ||Tωx0 − x0||

= ||Tωx0 − Tωxn + Tωxn − x0||

≤ ||T0x0 − T0xn||+ ||xn − x0||

since T (ω, xn) = xn. From the continuity of the operator Tω, and from the observation that

||xn − x0|| → 0 as n → ∞, it follows that the last term in the chain of inequalities given

above tends to zero as n → ∞ and therefore ||T0x0 − x0|| = 0 which proves that x0 ∈ I(ω).

Hence the set I(ω) is closed. We will now show that the set I(ω) is compact. The set I(ω)

is bounded since I(ω) is a subset of the the range of the operator Tω. Since the set I(ω) is

bounded and closed, it follows that γ(I(ω)) is well-defined. Suppose γ(I(ω)) = d > 0. Let

{xn} be an arbitrary sequence in I(ω). The γ({xn}) is well defined. Let γ({xn}) = ρ > 0.

Note that, there exists 0 < k < 1 such that

γ({Tωxn}) = ρ < k γ({xn}) = k ρ
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since the operator Tω is strictly condensing. Therefore there exists a finite cover {S1, . . . , Sr}
of {Tωxn} by closed sets such that, if Tωxm ∈ Si and Tωxn ∈ Si, for any i = 1, . . . , r, then

||Tωxn − Tωxm|| < kρ+ ϵ, ϵ > 0.

Let Ki = T−1
ω (Si), 1 ≤ i ≤ n. Then the sets {K1, . . . ,Kn} cover the set {xn} since T (ω, xn) =

xn, n ≥ 1 If xn and xm belong to Ki, then ||xn − xm|| = ||Tωxm − Tωxn|| < kρ+ ϵ. Therefore

ρ < kρ. Since 0 < k < 1, this is not possible. Hence ρ = 0. Therefore the closure of the

set {xn} is compact. This shows that every arbitrary sequence in I(ω) has compact closure.

Therefore every sequence in I(ω) has a convergent subsequence and I(ω) is the closed subset

of a complete separable metric space. Hence the set I(ω) is compact.

Lemma 4.3: Suppose the hypothesis stated in Theorem 4.1 holds. Let the set E be as stated

in Theorem 4.1 and let E be separable. Let {yi} be a countable dense subset of E and F be a

non-empty closed subset of E. Let I−1(F ) = {ω : I(ω) ∩ F ̸= ϕ} and d(x, F ) = inf{||x− y|| :
y ∈ F}. Define

Fn = {x : d(x, F ) <
1

n
}.

Then

I−1(F ) = ∩∞
n=1 ∪yi∈Fn {ω ∈ Ω : ||Tωyi − yi|| <

2

n
}.

and I−1(F ) ∈ B.

Proof: Note that I−1(F ) = {ω : I(ω) ∩ F ̸= ϕ} from the definition of the inverse. Let us

define

M(F ) = ∩∞
n=1 ∪yi∈Fn {ω ∈ Ω : ||Tωyi − yi|| <

2

n
}.

Clearly the set M(F ) is measurable. It is also easy to see that ω ∈ I−1(F ) implies that

ω ∈M(F ) since ω ∈ I−1(F ) implies that there exists some x0 ∈ F such that Tωx0 = x0 and

hence, given n ≥ 1, there exists yi ∈ Fi such that

||Tωyi − x0 + x0 − yi|| <
1

n
+

1

n
.

Now we will show that M(F ) ⊂ I−1(F ). Let ω ∈ M(F ). Then there exists a countable

subsequence {yik} of the countable dense sequence {yi} such that

d(yik , F ) <
1

k
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and

||Tωyik − yik || <
1

k
.

Let A = {yik}. Note that

||yik − yim || = ||yik − Tωyik + Tωyik − Tωyim + Tωyim − yim ||

≤ 2

k
+

2

m
+ ||Tωyik − Tωyim ||

which implies that the measure of non-compactness of the set {yik} is less than or equal

to measure of non-compactness of the set {Tωyik} which is a contradiction if γ({yik}) > 0.

Therefore γ({yik}) = 0. Hence the closure of the set A is compact. Therefore there exists a

subsequence {y∗n} of {yik} which converges. Let limn y
∗
n = y0. Then ||Tωy0 − y0|| = 0 which

implies that Tωy0 = y0. Therefore ω ∈ I−1(F ). Hence M(F ) ⊂ I−1(F ). We have shown

earlier that the set M(F ) contains the set I−1(F ). Therefore M(F ) = I−1(F ). Hence the set

I−1(F ) = {ω : I(ω) ∩ F ̸= ϕ} =M(f) = ∩∞
n=1 ∪yi∈Fn {ω ∈ Ω : ||Tωyi − yi|| <

2

n
} ∈ B.

Therefore the set I−1(F ) is measurable with respect to the measurable space (Ω,B).

Proof of Theorem 4.1 : Since I−1(F ) is measurable for every non-empty closed subset F

of E, it follows, by the selection theorem (Lemma 2.1) of Kuratowski- Ryll Nardzewski (cf

Hildenbrand (1974)), that there exists a measurable map f : Ω → E such that f(ω) ∈ I(ω)

and f(ω) is the required measurable fixed point in I(ω).

Theorem 4.4: Let (X, ρ) be a complete separable metric space and E be a closed bounded

subset of X. Let (Ω,B, µ) be a complete probability space. Suppose the operator T : Ω×E → E

is such that the following conditions are satisfied: (i) T is a random mapping;

(ii) for every ω ∈ Ω, there exists at least one x0 ∈ E such that Orb(Tω, x0) is compact; and

(iii) if Kω is the minimal closed subset of Orb(Tω, x0) which is left invariant by T, then the

function d(x,Kω) is measurable with respect to (Ω,B) for all x ∈ E..

Then the operator T has a random fixed point.

Proof : We have already established that, if a map T is an orbitally regular map and if

E0 = Orb(T, x0) is compact, then E0 has a minimal closed set which is also compact and

invariant under T. Given ω ∈ Ω, there exists a set Kω as defined above which is compact and
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invariant under Tω. It is further proved that, for every z ∈ Kω, Tωz = z. Now, consider the

mapping

I : Ω → 2X

such that I(ω) = Kω. It is clear that I is a compact-valued correspondence. We shall

now establish that I−1(F ) ∈ B for every non-empty closed subset F of X. This follows

by arguments similar to those given for proving I−1(C) ∈ B for every non-empty closed

subset C in the proof Theorem 4.1. Thus I is a measurable correspondence. Hence, by the

Kuratowski-Ryll Nardzewski theorem on selectors, it follows that there exists a measurable

map f : Ω → X such that f(ω) ∈ I(ω) = Kω and hence Tωf(ω) = f(ω). Hence f(ω) is the

required fixed point of the mapping Tω.. Note that the measurability of I−1(F ) follows from

the fact that the function d(x, I(ω)) is measurable and I(ω) is compact-valued.

We shall now prove some results for families of random mappings.

Definition 4.1: A subset K of a Banach space X has normal structure if, for each bounded

convex subset H of K which contains more than one element, there exists an element x ∈ H,

with the property

sup{||x− y|| : y ∈ H} < δ(H)

where dδ(H) denotes the diameter of the set H. For any set A contained in the Banach space

X, the diameter δ(A) = sup{||x− y|| : x, y ∈ A}.

Hereafter, we shall denote the diameter of a set A by δ(A).

Definition 4.2: A mapping T : X → X is said to be a non-expansive map if

||Tx− Ty|| ≤ ||x− y||, x, y ∈ X.

For any bounded subset H of X, let

rx(H) = sup{||x− y||, y ∈ H}.

For any bounded subset H and any subset K, of X, define

r(H,K) = inf{rx(H) : x ∈ K}

and

C(H,K) = {x ∈ K : rx(H) = r(H,K)}.
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The set C(H,K) is called the Chebyshev centre of H in K.

Lemma 4.5: If K is weakly compact and convex, and if H is bounded, then the set C(H,K)

is a non-empty closed convex subset of K.

For a proof of Lemma 4.5, see Belluce and Kirk (1967).

Definition 4.3: Let K be a bounded closed convex subset of a Banach space B. The set K

is said to have complete normal structure if every closed convex subset W contained in K,

which contains more than one point, satisfies the following condition (A): for every decreasing

net {Wα, α ∈ A} of subsets of W which have the property that r(Wα,W ) = r(W,W ), α ∈ A,

it is the case that the closure of

∪α∈AC(Wα,W )

is a non-empty proper subset of W.

The following theorem is due to Belluce and Kirk (1967).

Theorem 4.6: (Belluce and Kirk (1967) ) Suppose K is a weakly compact convex subset of

a Banach space B and the set K has a complete normal structure. Let F be a commutative

family of non-expansive mappings f of K into itself. Then there is an element x ∈ K such

that f(x) = x for every f ∈ F .

Remarks: Balluce and Kirk (1967) have proved that if a set K is a bounded convex subset

of a uniformly convex Banach space, then the set K has complete normal structure.

The next theorem gives sufficient conditions for the existence of a random fixed point for

a random operator T which is condensing for every ω ∈ Omega.

Theorem 4.7: Let X be a weakly compact convex subset of a separable Banach space E and

T be a mapping from Ω ×X → E such that T (ω, .) is a condensing map for every ω ∈ Ω..

Suppose that the set E is uniformly convex and for any ω ∈ Ω, T (ω, x) ∈ X for x ∈ X.

Further suppose that the set {(T (ω, x) : x ∈ E} is bounded for every ω ∈ Ω. if x ∈ X, then

the mapping T has a random fixed point.

Proof: Let x0 ∈ X and {ϵn} be a sequence of positive numbers such that 0 ≤ ϵn ≤ 1, n ≥ 1

and ϵn ↓ 0 as n→ ∞. Define

T̃n(ω, x) = ϵnx0 + (1− ϵn)T (ω, x).(4. 1)
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It can be checked that T̃n(ω, .) is a condensing map with condensation factor (1−ϵn)kω where

0 < kω < 1, and kω is a condensation factor of T (ω, .). It follows that the map T̃n(ω, .) has a

random fixed point by Theorem 4.1. Let σn(ω) be the random fixed point of T̃n(ω, .). Define

the map In from Ω into the family of weak compact subsets of X by the relation

In(ω) = weak closure of the set{σn(ω), σn+1(ω)......}.

Let I(ω) = ∩nIn(ω). Note that the weak topology on the space X is the metric topology (cf.

Dunford and Schwartz (1958), p 443). Using this observation, we will show that the set I is

weakly measurable.This follows from the following result of Himmelberg (1975):

”Let X be a separable and metrizable space and let Fn : Ω → X be a weakly measurable

relation with closed values for each n ≥ 1. Further suppose that, for each ω ∈ Ω, the set

Fn(ω) is compact for some n ≥ 1. Then F = ∩nFn is measurable.”

Applying the result of Himmelberg (1975) stated above, it follows that the set F is weakly

measurable. Hence, by the Kuratowski-Ryll Nardzewski theorem, there exists a weakly mea-

surable selector σ of I. For any x∗ ∈ E∗, x∗(f(.)) is measurable as a scalar function. Since E

is separable and weak-measurability with separability implies measurability, it follows that

σ is measurable. For a given ω ∈ Ω, there exists some subsequences {σnk
(ω)} of {σn(ω)}

such that σnk
(ω) converges weakly to σ(ω) as k → ∞. By the uniform convexity of the space

E, it follows that the set I − T (ω, .) is demi-closed by the Browder’s theorem (cf. Browder

(1965). By the demi-closedness of I − T (ω, .) = G(ω, .), since {xn} converges weakly to x0

and G(ω, xn) converges to x
∗
0, it follows that G(ω, x0) = x∗0. From this property and equation

(4.1) , it follows that σ(ω) is a fixed point of T (ω, .). We have already established that σ(ω)

is measurable. Hence σ(ω) is the random fixed point of the random map T.

Theorem 4.8: Let E be a uniformly convex separable Banach space, K be a closed convex

and bounded subset of E. Let (Ω,B, µ) be a complete probability space and T : Ω×K → K be

a condensing map for every ω. Suppose that T (ω, .) is compact for ω ∈ Ω. Then there exists

x0 ∈ K such that T (ω, x0) = x0, ω ∈ Ω.

Proof: The result follows from Theorems 4.1,4.6 and 4.7.

Theorem 4.9: Let E be a compact convex subset of a separable Banach space X and T :
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Ω×E → E be a random operator which is compact. Then the operator T has a random fixed

point.

Proof: Since the set E is a compact subset of a complete metric space, the set E is bounded.

Therefore the set T (ω,E) is compact for every ω ∈ Ω. Therefore, for every ω, the operator

T (ω, .) has a fixed point by the Schauder’s fixed point theorem. Let I : Ω → 2E be such that

I(ω) = {x : T (ω, x) = x} as in Lemma 4.2 and Theorem 4.1. The set I(ω) is closed as T (ω, .)

is continuous. Furthermore T (ω, .) is a compact operator. Therefore the set I(ω) is compact.

Then, following the arguments similar to those given in Lemma 4.3, it can be shown that

the set I−1(C) is measurable for every closed subset C of E. Therefore the operator T has a

random fixed point.

Remarks: The condition on the separability of the space X can be relaxed because the

space E is compact and hence separable.

Theorem 4.10: Let X be a non-empty bounded closed convex subset of a Banach space

E. Suppose M is a compact convex subset of X and ζ is a countable family of commuting

orbitally regular maps such that, for each x ∈ X and f ∈ ζ, Orb(f, x) ∩M ̸= ϕ. Then there

exists a point x0 ∈M such that f(x0) = x0 for every f ∈ ζ.

Proof : Let C be any closed non-empty convex subset of X such that f(C) ⊂ C for every

f ∈ ζ. Choose x ∈ C. Since f(C) ⊂ C, it follows that the Orb(f, x) ⊂ C and therefore

C ∩M ⊃ Orb(f, x) ∩M ̸= ϕ.

Therefore C ∩M ̸= ϕ. Let κ be the family of non-empty closed convex subsets of X invariant

under ζ. Then x ∈ κ and hence κ is non-empty. Let us order the sets in κ by inclusion. If

K ∈ κ and K ̸= ϕ, then K ∩M ̸= ϕ. Every finite subfamily of κ has a non-empty minimal

element. By the Zorn’s lemma, the family κ has a minimal element K∗. Let M̂ = K∗ ∩M.

Then M̂ ≠ ϕ. Furthermore, for x0 ∈ M̂, the set Orb(f, x0) is contained in M̂ and the set

Orb(f, x0) is a closed subset of M. Hence, by the orbital regularity of the maps f in ζ, each

f has a fixed point in M̂. By the orbital regularity condition (R2), it follows that f(x) = x

for every x ∈ M̂ and for every f ∈ ζ.

Theorem 4.11: Let X be a non-empty bounded closed subset of a separable Banach space

E. Let (Ω,B, µ) be a complete probability space. Suppose Λ is a countable set and ω denote

any element Ω. Let T λ : Ω×X → X be a random map for every λ ∈ Λ and orbitally regular
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for every ω ∈ Ω. Suppose that the family {T λ, λ ∈ Λ} is a commuting family and the set M

is a compact subset of X such that , for every x ∈ X, and for any ω ∈ Ω and λ ∈ Λ,

Orb(T λ(ω, x)) ∩M ̸= ϕ.

Let F λ(ω) = {x : T λ(ω, x) = x}. Then the function d(x0, F
λ(ω)) is a measurable function

and the family {T λ, λ ∈ Λ} has a common random fixed point.

Proof : Given ω ∈ Ω, let F (ω) = M̂ where the set M̂ is as defined in Theorem 4.10. The set

M̂ is a compact set and the function d(x, M̂) is measurable, since, for each λ, the set F λ(ω)

is such that the function d(x0, F
λ(ω)) is measurable. Therefore the function F : Ω → 2X is

itself a measurable multi-function. Now the function F has a measurable selector σ : Ω → X

by Kuratowski-Ryll Nardzewski lemma, σ(ω) ∈ M̂ for every T λ(ω, .) and T λ(ω, σ(ω)) = σ(ω)

for every λ. Therefore the family {T λ(ω, .), λ ∈ Λ} has a common random fixed point.

5 APPLICATIONS

Let C be a closed subset of R and X be the linear space of bounded continuous functions

on C. Then the space X is a Banach space under the supremum norm. Let (Ω,B, P ) be a

complete probability space and k : C × C × Ω → R+ be a continuous bounded function for

every ω ∈ Ω generating a ρ-set contraction or strictly condensing map with condensing factor

ρ, 0 < ρ < 1. Let f : C ×R+ → R+ be a bounded continuous function. Let Σ be the cone of

nonnegative functions in X. Define a random operator K : X → X by the mapping

Kx(s)(ω) =

∫
C
k(s, t, ω)x(t)dt, ω ∈ Ω

for x ∈ X. The operator K is called the random operator generated by the function k. Define

(Fx)(s) = f(s, x(s)), x ∈ X.(5. 1)

Theorem 5.1: Let the functions k and f be as defined above. and suppose the following

conditions hold:

(C(i)) the function k(s, t, ω) is measurable in ω or every (s, t) ∈ C × C;

(C(ii)) sup{
∫
C |k(s, t, ω)|dt, s ∈ C} =M <∞ a.s. [P ];

(C(iii)) there exists λ > 0 such that

inf{k(s, t, ω) : s ∈ C} > λ sup{k(s, t, ω) : s ∈ C}
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for every ω ∈ Ω and for every t ∈ C;

(C(iv)) the function f(s, t) is a non-decreasing function in t for each s ∈ C and is bounded

for s ∈ C and t ∈ [0,∞); and

(C(v)) there exists r > 0, such that

r − λM inf{f(s, r) : s ∈ C} < 0

and δ > 0 such that

|f(s, x)− f(s, y)| ≤ δ|x− y|, s ∈ C, x, y ∈ [r,∞).

Suppose 0 < ρδ < 1 where ρ is the condensing factor of the condensing map generated by

the function k(s, t, ω). Then there exists a non-zero random solution to the random integral

equation

x(s, ω) =

∫
C
k(s, t, ω)f(t, x(t, ω))dt.(5. 2)

Proof: Let K be the random operator generated by the function k. Let

E = {x ∈ X : x(s) ≥ 0 for all s ∈ C}

and

E′ = {x ∈ X : inf{x(s) : s ∈ C} ≥ λ sup{x(s); s ∈ C}}.

It can be seen that both the sets E and E′ are cones in the Banach space X. It is enough to

prove that there is a non-zero measurable solution to the operator equation

x = KFx

where F is defined by (5.1). Let T = KF. We will show that K(E) ⊂ E′ for ω ∈ Ω and the

mapping T (ω, .) is a δρ-contraction compressing the cone E′. Observe that K(E) ⊂ E since

k : C × C → R+. Suppose x ∈ E. Fix ω ∈ Ω. Then

inf{
∫
C
k(s, t, ω)x(t)dt : s ∈ C} ≥

∫
C
inf{k(s, t, ω) : s ∈ C}x(t)dt

≥ λ

∫
C
sup{k(s, t, ω) : s ∈ C}x(t)dt by (C(iii))

≥ λ sup{
∫
C
k(s, t, ω)x(t)dt : s ∈ C}

for every ω ∈ Ω. Let D = {x ∈ E′ : ||x|| ≥ r
λ} where r and λ are given by the conditions

(C(iii)) and (C(v)). Note the x ∈ E′ and ||x|| ≥ r
λ imply that inf{x(s) : s ∈ C} ≥ r. It
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follows, from the condition (C(v)) ,that the map F : D → E is a δ-contraction, Then, by

a theorem from Potter (1974), it follows that T = KF is a δρ-set contraction. or a strictly

condensing map with condensing factor. Suppose x ∈ E′ and ||x|| = r
λ . Then

(x− Tx)(s) = x(s)−
∫
C
k(s, t, ω)f(t, x(t))dt

≤ ||x|| −
∫
C
k(s, t, ω)f(t, λ||x||)dt.

The last inequality follows from the definition of the set E′ and the condition (C(v)). Hence

(x− T (x))(s) ≤ r

λ
− inf{f(s, r) : s ∈ C}

∫
C
k(s, t, ω}dt.

Let s0 ∈ C such that ∫
C
k(s0, t, ω)dt > M − ϵ

where ϵ > 0 such that

r − λ(M − ϵ) inf{f(s, r) : s ∈ C} < 0

following condition (C(v)). Then (x − Tx)(s0) < 0 and hence x − Tx is not in E. Since

E′ ⊂ E, it follows that x− Tx σ 0 for all x ∈ E′, ||x|| = r
λ where “σ is the ordering induced

by E′. Suppose y ∈ E′. Then

(y − Ty)(s) = y(s)−
∫
C
k(s, t, ω)f(t, y(t))dt ≥ λ||y|| −MM ′

by the conditions (C(ii)), (C(iii)) and (C(iv)) where M ′ ≥ f(s, y) for all s ∈ C and y ∈
(0,∞). Therefore, if ||y|| > MM ′

λ , then

(y − Ty)σ0

for all y ∈ E′ and ||y|| = γ where γ is a constant greater than MM ′

λ . From the above

observations, it follows that T : F r
λ
,γ → E′ is a compression of the cone E′ for every ω ∈ Ω

where

F r
λ
,γ = {x ∈ E′ :

r

λ
≤ ||x|| ≤ γ}.

Therefore the set {x ∈ F r
λ
,γ : Tωx = x} is nonempty (cf. Potter (1974)). This holds for every

ω ∈ Ω. An application of Theorem 4.1 implies that there exists a measurable solution of the

equation

x = Tx, x ∈ F r
λ
,γ

for the equation (5.2) which proves the theorem.
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Theorem 5.2: Let (Ω,B, P ) be a complete probability space, C be a closed subset of Rn and

k(t, s, ω) be a measurable function for every (s, t), s ∈ C, t ∈ C as defined in Theorem 5.1.

Further suppose that the following conditions hold:

(D(i)) supω∈Ω sup{
∫
C |k(s, t, ω)|dt : s ∈ C} =M <∞;

(D(ii)) there exists λ > 0 such that

inf{k(s, t, ω) : s ∈ C} > λ sup{k(s, t, ω) : s ∈ C} for all ω ∈ Ω, t ∈ C.

(D(iii)) the function k(s, t, ω) is measurable in ω for any fixed (s, t) ∈ C × C;

(D(iv)) the function f(s, t, ω) is measurable in ω for any fixed (s, t) ∈ C × C;

(D(v)) the function f(s, t, ω) is non-decreasing function in t for any given s ∈ C,ω ∈ Ω and

it is bounded for all s ∈ C, t ∈ [0,∞), ω ∈ Ω;

(D(vi)) there exists r > 0 such that

r − λM inf{f(s, t, ω) : s ∈ C} < 0, ω ∈ Ω

and δ > 0 such that

|f(s, x, ω)− f(s, y, ω)| ≤ δ |x− y|, s ∈ C,ω ∈ Ω, r ≤ x, y <∞.

(D(vii)) Suppose 0 < ρδ < 1 where ρ is the condensing factor of the condensing map generated

by the function k(s, t, ω).

Then there exists a a measurable solution to the stochastic integral equation

x(t, ω) =

∫
C
k(t, s, ω)f(s, x(s, ω), ω)ds, ω ∈ Ω.(5. 3)

Proof : The proof is similar to that given for proving Theorem 5.1. An application of

Theorem 4.1 shows the existence of a random solution to the equation (5.3).

Let (Ω,B, P ) be a complete probability space and µ be a complete σ-finite measure on

(R+,B1) where B1 is the σ-algebra of Borel subsets on (0,∞). Let x(t, ω), h(t, x(t, ω)) and

f(t, x(t, ω), ω) be n-dimensional random vectors for each t ∈ R+. Let Σ(n) denote the linear

space spanned by the real-valued n-dimensional random vectors defined on the probability
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space (Ω,B, P ) such that each component of the random vector belongs to L∞(Ω,B, P ). For
any x(ω) = (x1(ω), . . . , xn(ω)) ∈ Σ(n), define

||x||Σ(n) = max
1≤k≤n

{ess− sup
ω∈Ω

|xk(ω)|}.

with the term ess− sup is taken with respect to the probability measure P. Let g : R+ → R+

be a real-valued positive continuous strictly increasing function such that g(t) → ∞ as t→ ∞.

Define the Sg-norm of a random vector x(t, ω) by

||x(t, ω)||Sg = sup
t∈R+

{||x(t, ω||Σ(n)

g(t)
}.

Let S0 be the set of continuous mappings from R into Σ(n). Further suppose that, if x ∈ S0,

then the function f(s, x(s, ω), ω) is continuous from R into Σ(n). In addition, suppose that

the function k(t, s, .) : R+ × R+ → L∞(Ω,B, P ) is continuous in t for almost all s ∈ R+.

Furthermore, for every t ∈ R+ and x ∈ S0,∫
R+

||k(t, s, ω)x(s, ω)||Σ(n)dµ(s) <∞.

Further suppose that there exists a function Λ defined µ-a.e such that

||(k(t, u, ω)− k(s, u, ω))x(u, ω)||Σ(n) < Λ(u)||x(u, ω)||Σ(n)µ− a.e.

and

Λ(u)||x(s, ω)||Σ(n) is µ− integrable for x ∈ S0.

The conditions stated above ensure that the integral∫
C
k(s, t, ω)x(s, ω)dµ(s)

exists. Let Sg be the set of continuous functions x(t, ω) fromR into Σ(n) such that ||x(t, ω)||Sg <

∞.

Theorem 5.3: Suppose the conditions stated above hold with the function. Let C be a closed

subset of Rn. Further suppose that the following conditions hold with g(t) = eτt for some

τ > o:

(E(i)) there exists constants θ > 0 and α > τ such that∫
C
||k(s, t, ω)||g(s)dµ(s) < θ e−αt, t ∈ R+;
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(E(ii)) the function f(t, x(t, ω), ω) is a continuous function from R+ into the linear space

Σ(n) such that,

for ||x(t, ω)||Sg ≤ ρ, ||y(t, ω)||Sg ≤ ρ,

||f(t, x(t, ω), ω)− f(t, y(t, ω), ω)||Σ(n) < λ ||x(t, ω)− y(t, ω)||Σ(n),t∈R+

where λ and ρ are positive constants.

(E(iii)) the function h(t, x(t, ω)) is a continuous function from R+ into Σ(n) such that for

||x(t, ω)||Sg ≤ ρ, ||y(t, ω)||Sg ≤ ρ,

||h(t, x(t, ω))− h(t, y(t, ω))||Σ(n) < γ||x(t, ω)− y(t, ω)||Σ(n),t∈R+

where γ and ρ are positive constants. Then there exists a unique random solution to the

random integral equation

x(t, ω) = h(t, x(t, ω)) +

∫
C
k(s, t, ω)f(s, x(s, ω), ω)dµ(s), ω ∈ Ω.(5. 4)

We shall prove a lemma before proving the Theorem 5.3.

Lemma 5.4: Let the kernel k(s, t, ω) be defined as given above. Let S0 be the set of all

continuous functions from R+ into Σn. Define

(Γx)(t, ω) =

∫
C
k(s, t, ω)x(s, ω)dµ(s), x ∈ Σ(n).

Then the function Γ maps S0 into itself and the mapping is continuous.

Proof: Note that the set S0 is a locally convex space with the topology of uniform conver-

gence on compact sets and it is a Frechet space with the metric

ρ(x, y) = Σ∞
m=1

1

2m
||x− y||m

1 + ||x− y||m

where

||x(t, ω)||m = sup
t∈Km

||x(t, ω)||Σ(n) ,Km = [0,m],m ≥ 1.

Note that R+ = ∪∞
m=1Km. Let

(Γmx)(t, ω) =

∫
Km

k(t, s, ω)x(s, ω)dµ(s).
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Suppose x ∈ S0. Let tn → t as n→ ∞. It is easy to see that

||(Γx)(tn, ω)− (Γx)(t, ω)||Σ(n) → 0

as n → ∞ by the dominated convergence theorem. Hence Γx ∈ S0 if x ∈ S0. Suppose that

xj → x in S0, that is, the sequence of functions {xj(t, ω)} converge to the function x(t, ω) in

the space S0 endowed with the topology of uniform convergence on compact sets.Let n ≥ 1.

Then

||(Γmxj)(tn, ω)− (Γmx)(t, ω)||n = sup
t∈Kn

||
∫
Km

k(t, s, ω)xj(s, ω)dµ(s)

−
∫
Km

k(t, s, ω)x(s, ω)dµ(s)||Σ(n)

≤ sup
t∈Kn

∫
Km

||k(t, s, ω)||||xj(s, ω)− x(s, ω)||Σ(n)dµ(s).

Note that ||xj(s, ω)− x(s, ω)||Σ(n) → 0 as j → ∞ uniformly on the compact set Km. Hence,

given ϵ > 0, there exists n0 depending on m such that, for every j > n0,

||(Γmxj)(t, ω)− (Γmx)(t, ω)||n ≤ ϵ sup
t∈Kn

∫
Km

||k(t, s, ω)||dµ(s)

by the definition of the operator Γm. Observe that the function∫
Km

||k(t, s, ω)||dµ(s)

is a continuous function in t ∈ Kn and the set Kn is compact. Therefore there exists a

constant Bn > 0 such that ∫
Km

||k(t, s, ω)||dµ(s) < Bn, t ∈ Kn.

Hence, for j > n0,

||(Γmxj)(t, ω)− (Γmx)(t, ω)||n ≤ Bnϵ.

Hence, for each m ≥ 1, (Γmxj)(t, ω) converges to (Γmx)(t, ω) as j → ∞. Furthermore

(Γmx)(t, ω) converges to (Γx)(t, ω) asm→ ∞. Hence, by a theorem in Dunford and Schwartz

(1958), p.54, it follows that Γ is continuous on S0.

Proof of Theorem 5.3: Let

(Qx)(t, ω) = h(t, x(t, ω)) +

∫
C
k(t, s, ω)f(s, x(s, ω), ω)dµ(s)
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where Q : E → E and E = {x : x ∈ Sg and ||x||Sg ≤ ρ}. We will show that the operator Q is

a random contraction mapping. Observe that, for x ∈ Sg,

||(Γx)(t, ω)||Σ(n) ≤
∫
C
||k(t, s, ω)||||x(s, ω)||Σ(n)dµ(s)

< ||x(t, ω)||Sg

∫
C
||k(s, t, ω)||g(s)dµ(s)

< ||x(t, ω)||Sgθe
−αt <∞.

Hence ||Γx||Sg <∞ and (Γx)(t, ω) ∈ Sg. Therefore Γ(Sg) ⊂ Sg. By Lemma 5.4 and the closed

graph theorem, it follows that Γ is a bounded linear operator on Sg. Note that

||(Qx)(t, ω)||Sg ≤ ||h(t, x(t, ω))||Sg + θe−αt||f(t, x(t, ω), ω)||Sg .

Let β > 0 such that β > θ and γ + λβ < 1. Then

||(Qx)(t, ω)||Sg ≤ (γ + λβ)||x(t, ω)||Sg + ||h(t, 0)||Sg + β||f(t, 0, ω)||Sg ≤ ρ.

Therefore (Qx)(t, ω) ∈ E whenever x(t, ω) ∈ E. Similarly, for x ∈ E and y ∈ E,

||(Qx)(t, ω)− (Qy)(t, ω)||Sg ≤ (γ + λβ)||x(t, ω)− y(t, ω)||Sg .

Therefore the mapping Q : E → E is a contraction mapping. By the existence of a random

fixed point for non-linear random contraction mapping (cf. Bharucha-Reid (1976)), the

equation (5.4) has a solution which is an almost surely continuous vector-valued process.

Suppose there exist two solutions x and y. Observe that

||x(t, ω)− y(t, ω)||Σ(n) ≤ ae−bt

for some a > 0 and b > 0 and the last term tends to zero as t→ ∞ almost surely. Hence the

solution is unique almost surely.
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