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CHARACTERIZATION OF DISTRIBUTIONS BASED ON FUNCTIONS

OF CONDITIONALLY INDEPENDENT RANDOM VARIABLES

B.L.S.PRAKASA RAO

CR RAO ADVANCED INSTITUTE FOR MATHEMATICS,

STATISTICS AND COMPUTER SCIENCE, HYDERABAD

Abstract: Characterization problems or identifiability issues based on functions of condi-

tionally independent random variables are studied.

1 Introduction

Properties of conditionally independent random variables were studied in Prakasa Rao (2009).

Conditional versions of generalized Borel-Cantelli lemma, generalized Kolmogorov inequality,

Hajek-Renyi inequality, strong law of large numbers and central limit theorem were discussed

in Prakasa Rao (2009). Earlier discussions on the topic of conditional independence can be

found in Chow and Teicher (1978) and Majerak et al. (2005). Roussas (2008) studied addi-

tional results for conditionally independent random variables. Bairamov (2011) investigated

the copula representations for conditionally independent random variables and studied the

distributional properties of order statstics of these random variables. Dawid (1979, 1980)

observed that many important concepts in statistics can be considered as expressions of

conditional independence. Shaked and Spizzichino (1998) considered n nonnegative random

variables Ti, i = 1, . . . , n which are interpreted as the lifetimes of n units and assuming that

T1, . . . , Tn, are conditionally independent, given some random variable Θ, determined the con-

ditions under which Ti, i = 1, . . . , n are positively dependent. It is known that conditional

independence of a set of random variables does not imply independence and independence

does not imply conditional independence. This can be seen from the examples given in

Prakasa Rao (2009).

We now discuss some characterization or identifiability problems for conditionally inde-

pendent random variables. Analogous results for independent random variables were studied

in Prakasa Rao (1992) following the works of Kotlarski and others. Through out this paper,

we assume that the conditional distributions specified exist as regular conditional distribu-

tions. For brevity, we write “for all z” for the statement “for all z in the support of the

distribution function of the random variable Z.”
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2 Identification of component distributions from joint distri-

bution of sums

Suppose X1, X2 and X3 are conditionally independent random variables given a random

variable Z. Let ϕi(t; z) denote the conditional characteristic function of the random variable

Xi given the event Z = z. Let Y1 = X1 −X3 and Y2 = X2 −X3.

Theorem 2.1: If the conditional characteristic function of the bivariate random vector

(Y1, Y2) given Z = z does not vanish, then the joint distribution of (Y1, Y2) given Z = z

determines the distributions of X1, X2 and X3 given Z = z up to a change in location

depending on z.

Proof : Let ϕ(t1, t2; z) denote the conditional characteristic function of (Y1, Y2) given Z = z.

Let ϕk(t; z) denote the conditional characteristic function of Xk given Z = z for k = 1, 2, 3.

Then, for any t1, t2 real,

ϕ(t1, t2; z) = E[exp(it1Y1 + it2Y2)|Z = z](2. 1)

= E[exp(it1(X1 −X3) + it2(X2 −X3)|Z = z]

= E[exp(it1X1 + it2X2 − i(t1 + t2)X3)|Z = z]

= ϕ1(t1; z) ϕ2(t2; z) ϕ3(−t1 − t2; z)

by the conditional independence of the random variables Xi, 1 ≤ i ≤ 3 given Z = z. Since

ϕ(t1, t2; z) ̸= 0 for all t1 and t2 by hypothesis, it follows that ϕk(t; z) ̸= 0 for all t. Let

W1,W2 and W3 be another set of three conditionally independent random variables given Z

with the conditional characteristic functions ψk(t; z) given Z = z. Let V1 = W1 −W3 and

V2 =W2−W3 and ψ(t1, t2; z) be the conditional characteristic function of the random vector

(V1, V2) given Z = z. Suppose the conditional distributions of the random vectors (Y1, Y2)

and (V1, V2) are the same given Z = z. Then, it follows that

ϕ(t1, t2; z) = ψ(t1, t2; z),−∞ < t1, t2 <∞(2. 2)

for all z. Hence

ϕ1(t1; z) ϕ2(t2; z) ϕ3(−t1 − t2; z) = ψ1(t1; z) ψ2(t2; z) ψ3(−t1 − t2; z)(2. 3)

for all z. Furthermore ϕi(t; z) ̸= 0, i = 1, 2, 3 and ψi(t; z) ̸= 0, i = 1, 2, 3 for all t real by
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hypothesis and for all z since ϕ(t1, t2; z) = ψ(t1, t2; z) ̸= 0 for all t1, t2 real and for all z. Let

γi(t; z) = ψi(t; z)/ϕi(t; z), i = 1, 2, 3.(2. 4)

Note that the functions γi(.; z), i = 1, 2, 3 are continuous complex-valued functions with

γi(0; z) = 1, i = 1, 2, 3 satisfying the equation

γ1(t1; z) γ2(t2; z)γ3(−t1 − t2; z) = 1,−∞ < t1, t2 <∞(2. 5)

for all z. Let t1 = t and t2 = 0 in (2.5). Then we have

γ1(t; z) γ3(−t; z) = 1,−∞ < t <∞(2. 6)

for all z. Let t2 = t and t1 = 0 in (2.5). Then we have

γ2(t; z) γ3(−t; z) = 1,−∞ < t <∞(2. 7)

for all z. Substituting for γ1(t; z), and γ2(t; z) in terms of γ3(t; z) in (2.5), it follows that

γ3(t1 + t2; z) = γ3(t1; z) γ3(t2; z),−∞ < t1, t2 <∞(2. 8)

with γ3(0; z) = 1 for all z. It is known that the only measurable solution of this Cauchy

functional equation is

γ3(t; z) = ec(z) t,−∞ < t <∞(2. 9)

where c(z) is a complex-valued function depending only on z. Observing that γi(−t; z) is the
complex conjugate of γi(t; z) for all z from the properties of the characteristic functions, it

is easy to see that

γ1(t; z) = γ2(t; z) = γ3(t; z) = ec(z)t,−∞ < t <∞.(2. 10)

This equation in turn implies that

ψj(t; z) = ϕj(t; z) e
c(z)t,−∞ < t <∞, j = 1, 2, 3(2. 11)

for all z. Since ψj(t; z) is the complex conjugate of ψj(−t; z) from the properties of character-

istic functions, it follows that c(z) = i β(z) where β(z) is a real-valued function. Therefore

ψj(t; z) = ϕj(t; z) e
iβ(z)t,−∞ < t <∞, j = 1, 2, 3(2. 12)

for all z where β(z) is a real-valued function depending only on z. From the properties of

characteristic functions, it follows that the conditional distributions of the random variables

Wj and Xj + β(z) are the same for j = 1, 2, 3 given the event Z = z.
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The result proved above gives sufficient conditions under which the conditional joint

distributions of three conditionally independent random variables determine the conditional

distributions of the individual summands. We now give a method which explicitly determine

the distributions of the individual summands under some additional conditions.

3 Explicit determination of component distributions from joint

distribution of sums

Suppose X0, X1, X2 are conditionally independent random variables given a random variable

Z with conditional characteristic functions ϕi(t; z), i = 0, 1, 2 respectively given Z = z.

Suppose that the characteristic functions ϕi(t; z) are different from zero for all t ∈ R. Let

Y1 = X0 +X1 and Y2 = X0 +X2. Let ψ(t1, t2; z) be the conditional characteristic function

of (Y1, Y2) given Z = z. Suppose this function is known. It is obvious that

ψ(t1, t2; z) = ϕ0(t1 + t2; z) ϕ1(t1; z) ϕ2(t2; z),−∞ < t1, t2 <∞(3. 1)

for all z from the conditional independence of the random variables X0, X1, X2 given Z = z.

Note that ψ(t1, t2; z) ̸= 0 for all −∞ < t1, t2 <∞. Let t2 = 0 in (3.1). Then we get that

ϕ0(t1; z) ϕ1(t1; z) = ψ(t1, 0; z),−∞ < t1 <∞(3. 2)

for all z from the properties of characteristic functions. Let t1 = 0 in (3.1).Then we have

ϕ0(t2; z) ϕ2(t2; z) = ψ(0, t2; z),−∞ < t2 <∞(3. 3)

for all z. Relations (3.1) to (3.3) show that

ϕ0(t1 + t2; z) ϕ1(t1; z) ϕ2(t2; z) ψ(t1, 0; z) ψ(0, t2; z)(3. 4)

= ψ(t1, t2; z) ϕ0(t1; z) ϕ1(t1; z) ϕ0(t2; z)ϕ2(t2)

and hence

ϕ0(t1 + t2; z) =
ψ(t1, t2; z)

ψ(t1, 0; z)ψ(0, t2; z)
ϕ0(t1; z)ϕ0(t2; z)(3. 5)

for −∞ < t1, t2 <∞ and for all z. Let ψi(t; z) = log ϕi(t; z) be the continuous branch of the

logarithm of ϕi(t; z) with ψi(0; z) = 0. Then it follows that

ψ0(t
′
1 + t2; z) = log

ψ(t′1, t2; z)

ψ(t′1, 0; z)ψ(0, t2; z)
+ ψ0(t

′
1; z) + ψ0(t2; z)(3. 6)
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for −∞ < t′1, t2 < ∞ and for all z. Assume that integration on both sides of the equation

(3.6) with respect to t′1 over the interval [0, t1] is valid. Then it follows that∫ t1

0
ψ0(t

′
1 + t2; z)dt

′
1 =

∫ t1

0
log

ψ(t′1, t2; z)

ψ(t′1, 0)ψ(0, t2; z)
dt′1(3. 7)

+

∫ t1

0
ψ0(t

′
1; z)dt

′
1 +

∫ t1

0
ψ0(t2; z)dt

′
1

for −∞ < t1 <∞ and for all z. Let t = t′1 + t2 in the integral on the leftside of the equation

(3.7). Then it follows that∫ t1+t2

t2
ψ0(t; z)dt =

∫ t1

0
log

ψ(t′1, t2; z)

ψ(t′1, 0)ψ(0, t2; z)
dt′1(3. 8)

+

∫ t1

0
ψ0(t; z)dt+ t1ψ0(t2; z).

Rewriting the equation (3.6) in the form

ψ0(t1 + t′2; z) = log
ψ(t1, t

′
2; z)

ψ(t1, 0; z)ψ(0, t′2; z)
+ ψ0(t1; z) + ψ0(t

′
2; z)(3. 9)

and integrating on both sides of this equation with respect to t′2 over the interval [0, t2], it

follows that ∫ t1+t2

t1
ψ0(t; z)dt =

∫ t2

0
log

ψ(t1, t
′
2; z)

ψ(t1, 0; z)ψ(0, t′2; z)
dt′2(3. 10)

+

∫ t2

0
ψ0(t; z)dt+ t2 ψ0(t1; z).

Equating the relations (3.8) and (3.10), we get that

t1 ψ0(t2; z)− t2 ψ0(t1; z) =

∫ t2

0
log

ψ(t1, t
′
2; z)

ψ(t1, 0; z)ψ(0, t′2; z)
dt′2(3. 11)

−
∫ t1

0
log

ψ(t′1, t2; z)

ψ(t′1, 0; z)ψ(0, t2; z)
dt′1

for −∞ < t1, t2 <∞ and for all z. Dividing both sides of the equation by t1t2 ̸= 0, we have

ψ0(t2; z)

t2
− ψ0(t1; z)

t1
=

1

t1t2
[

∫ t2

0
log

ψ(t1, t
′
2; z)

ψ(t1, 0; z)ψ(0, t′2; z)
dt′2(3. 12)

−
∫ t1

0
log

ψ(t′1, t2; z)

ψ(t′1, 0)ψ(0, t2; z)
dt′1]
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for −∞ < t1, t2 < ∞, t1t2 ̸= 0. Let t2 = t and t1 → 0. Assume that m0(z) = E(X0|Z =

z) < ∞ and that the interchange of limit and the integral sign is permitted in the following

computations. Then, we have

lim
t→0

ψ0(t; z)

t
= im0(z)(3. 13)

and, from equation (3.12), we have

ψ0(t; z)

t
= i m0(z) +

1

t
lim
t1→0

[

∫ t

0

1

t1
log

ψ(t1, v; z)

ψ(t1, 0; z)ψ(0, v; z)
dv(3. 14)

− 1

t1

∫ t1

0
log

ψ(u, t; z)

ψ(u, 0; z)ψ(0, t; z)
du]

= i m0(z) +
1

t
lim
t1→0

[

∫ t

0

1

t1
log

ψ(t1, v; z)

ψ(t1, 0; z)ψ(0, v; z)
dv]

− log
ψ(0, t; z)

ψ(0, 0; z)ψ(0, t; z)

= i m0(z) +
1

t
lim
t1→0

[

∫ t

0

1

t1
log

ψ(t1, v; z)

ψ(t1, 0; z)ψ(0, v; z)
dv]

= i m0(z) +
1

t

∫ t

0

∂

∂u
[log

ψ(u, v; z)

ψ(u, 0; z)ψ(0, v; z)
]|u=0dv.

Hence

ψ0(t; z) = it m0(z) +

∫ t

0

∂

∂u
[log

ψ(u, v; z)

ψ(u, 0; z)ψ(0, v; z)
]|u=0dv.(3. 15)

Using this explicit formula for ψ0(t; z), it is possible to compute ϕ0(t; z) and hence compute

ϕ1(t; z) and ϕ2(t; z) by using the relations

ϕ1(t; z) =
ψ(t, 0; z)

ϕ0(t; z)
, ϕ2(t, z) =

ψ(0, t; z)

ϕ0(t; z)
,−∞ < t <∞.(3. 16)

Equations (3.15) and (3.16) give the explicit formulae for computing the characteristic func-

tions of the conditional distributions of X0, X1 and X2 given Z = z provided the conditional

characteristic function of (X0 +X1, X0 +X2) given Z = z is known and non-vanishing.

Remarks : (i) The assumption of the non-vanishing property of the conditional character-

istic function of the bivariate random vector (Y1, Y2) given the random variable Z cannot

be relaxed. This can be seen from the Example 2.1.1 in Prakasa Rao (1992). However, if

the conditional characteristic functions of X1, X2, X3 given the random variable Z are an-

alytic, then Theorem 2.1 holds without the assumption of non-vanishing of the conditional

characteristic functions. See Remark 2.1.5 in Prakasa Rao (1992).
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(ii) Theorem 2.1 can be extended to n conditionally independent random variables. Sup-

pose Xi, 1 ≤ i ≤ n are conditionally independent random variables given a random variable

Z. Let Yi = X1 −Xn, 1 ≤ i ≤ n − 1. Suppose the conditional characteristic function of the

vector Y = (Y1, . . . , Yn−1) does not vanish. then the conditional joint distribution of Y given

Z = z determines the conditional distributions of X1, X2, . . . , Xn given Z = z up to a change

in location depending on z.

(iii) Theorem 2.1 can also be rephrased in terms of ratios instead of sums. Suppose

X1, X2, X3 are three conditionally independent positive random variables given a random

variable Z. Let Y1 =
X1
X2

and Y2 =
X2
X3
. If the conditional characteristic function of (log Y1, log Y2)

given Z = z does not vanish, then the conditional distribution of (Y1, Y2) given Z = z de-

termines the conditional distributions of X1, X2, X3 up to a change of scale depending on

z.

4 Identification of component distributions from joint distri-

bution of maxima

Let X0, X1 and X2 be conditionally independent random variables given a random variable

Z Define Y1 = max(X0, X1) and Y2 = max(X0, X2).

Theorem 4.1: The conditional joint distribution of the vector (Y1, Y2) given the event

Z = z uniquely determines the conditional distributions of the random variables X0, X1 and

X2 given Z = z. provided the supports of the conditional distributions of X0, X1 and X2 are

the same given Z = z.

Proof : Let Fi(x; z), i = 0, 1, 2 and F ∗
i (x; z) denote alternate possibilities for the conditional

distribution functions of Xi given Z = z for i = 0, 1, 2. Let the conditional joint distribution

of (Y1, Y2) given z = z be denoted by G(y1, y2; z). Then, for −∞ < y1 ≤ y2 <∞,

G(y1, y2; z) = P (Y1 ≤ y1, Y2 ≤ y2|Z = z)(4. 1)

= P (X0 ≤ y1, X1 ≤ y1, X0 ≤ y2, X2 ≤ y2|Z = z)

= P (X0 ≤ y1, X1 ≤ y1, X2 ≤ y2|Z = z)

= F0(y1; z)F1(y1; z)F2(y2; z)

7



by the conditional independence of the random variables X0, X1 and X2 given Z = z. Since

Fi∗(.; z) is the alternate possibile distribution for the conditional distribution of Xi, i = 0, 1, 2

given Z = z, it follows that

F0(y1; z)F1(y1; z)F2(y2; z) = F ∗
0 (y1; z)F

∗
1 (y1; z)F

∗
2 (y2; z)(4. 2)

for −∞ < y1 ≤ y2 <∞ and for all z. Let y2 → ∞. Then it follows that

F0(y1; z)F1(y1; z) = F ∗
0 (y1; z)F

∗
1 (y1; z).−∞ < y1 <∞.(4. 3)

Relations (4.2) and (4.3) show that

F2(y2; z) = F ∗
2 (y2; z),−∞ < y2 <∞(4. 4)

provided F0(y1; z)F1(y1; z) > 0. Note that, for any given z, the support of the function

F0(.; z)F1(.; z) is the same as the support of the function F ∗
0 (.; z)F

∗
1 (.; z) from the equation

(4.3). Let us now choose −∞ < y2 ≤ y1 <∞. Then

G(y1, y2; z) = P (Y1 ≤ y1, Y2 ≤ y2|Z = z)(4. 5)

= P (X0 ≤ y1, X1 ≤ y1, X0 ≤ y2, X2 ≤ y2|Z = z)

= P (X0 ≤ y2, X1 ≤ y1, X2 ≤ y2|Z = z)

= F0(y2; z)F1(y1; z)F2(y2; z)

by the conditional independence of the random variables X0, X1 and X2 given Z = z. This

relation gives the equation

F0(y2; z)F1(y1; z)F2(y2; z) = F ∗
0 (y2; z)F

∗
1 (y1; z)F

∗
2 (y2; z)(4. 6)

for −∞ < y2 ≤ y1 <∞ and for all z. Let y1 → ∞. Then it follows that

F0(y2; z)F2(y2; z) = F ∗
0 (y2; z)F

∗
2 (y2; z),−∞ < y2 <∞.(4. 7)

Equations (4.6) and (4.7) show that

F1(y1; z) = F ∗
1 (y1; z),−∞ < y1 <∞(4. 8)

provided F0(y2; z)F2(y2; z) > 0. Note that the support of the function F0(.; z)F2(.; z) is

the same as the support of the function F ∗
0 (.; z)F

∗
2 (.; z) from the equation (4.6). Since the

8



supports of the conditional distribution functions F0(.; z), F1(.; z), F2(.; z) given Z = z are

the same, it follows that

Fi(y; z) = F ∗
i (y; z)(4. 9)

from the equations (4.2), (4.4) and (4.8) over the common support of X0, X1 and X2 given

Z = z. Hence the conditional distribution of (Y1, Y2) given Z = z, uniquely determines the

conditional distributions of X0, X1 and X2 given Z = z.

Remarks : (i) It is known that the distribution of the random variable Y1 = max(X0, X1)

alone cannot determine the distributions of X0 and X1 uniquely even if X1 and X2 are

independent unless X0 and X1 are independent and identically distributed random variables.

A similar observation holds for the conditional distribution of Y1 given Z = z.

(ii) Given the conditional joint distribution G(y1, y2; z) of the bivariate random vector

(Y1, Y2) given Z = z in Theorem 4.1, it is possible to explicitly determine the conditional

distributions Fi(.; z), i = 0, 1, 2 and they are given by

F0(x; z) =
G(x,∞; z)G(∞, x; z)

G(x, x; z)
,(4. 10)

F1(x; z) =
G(x, x; z)

G(∞, x; z)
,(4. 11)

and

F2(x; z) =
G(x, x; z)

G(x,∞; z)
.(4. 12)

This can be checked by using the relation (4.5) and following methods in Kotlarski (1978).

(iii) A result similar to Theorem 4.1 can be proved for minima of random variables

following Theorem 2.3.1 in Prakasa Rao (1992).

5 Identification of component distributions from joint distri-

bution of Maximum and Minimum

Let X0, X1, X2 be conditionally independent random variables given a random variable Z.

Let Y1 = min(X0, X1) and Y2 = max(X0, X2).

Theorem 5.1: Let Fi(.; z) be the conditional distribution Xi given Z = z for i = 0, 1, 2.

Suppose that, for some fixed a, b, x0, q satisfying −∞ ≤ a < x0 < b ≤ ∞, 0 < q < 1 possibly
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depending on z,

F1(x; z) < 1, x < b ;F1(b− 0; z) = 1 if b <∞,(5. 1)

F2(y; z) < 1, y > a ;F(a+ 0; z) = 0 if a > −∞,(5. 2)

F0(a+ 0; z) = 0, F0(b− 0; z) = 1, F0(x0; z) = q(5. 3)

and F0(.; z) is strictly increasing in (a, b). Then the conditional joint distribution of (Y1, Y2)

given Z = z uniquely determines the conditional distributions of F0(.; z), F1(.; z) and F2(.; z).

Proof : Let y1 and y2 be chosen such that −∞ < y1 ≤ y2 <∞. Then

P (Y1 > y1, Y2 ≤ y2|Z = z) = P (X0 > y1, X1 > y1, X0 ≤ y2, X2 ≤ y2|Z = z)(5. 4)

= P (y1 < X0 ≤ y2, X1 > y1, X2 ≤ y2)|Z = z)

= (F0(y2; z)− F0(y1; z))F̄1(y1; z)F2(y2; z)

where F̄i(y; z) = 1 − Fi(y; z), i = 0, 1, 2. Suppose that {F ∗
0 (.; z), F

∗
1 (.; z), F

∗
2 (.; z)} is another

set of conditional distributions for {X0, X1, X2} given Z = z satisfying the conditions stated

in the theorem such that the conditional distributions of (Y1, Y2) given Z = z are the same

under {Fi(.; z), i = 0, 1, 2} as well as {F ∗
i (.; z), i = 0, 1, 2}. Then

(F ∗
0 (y2; z)− F ∗

0 (y1; z))F̄
∗
1 (y1; z)F

∗
2 (y2; z)(5. 5)

= (F0(y2; z)− F0(y1; z))F̄1(y1; z)F2(y2; z)

for −∞ < y1 ≤ y2 <∞ and for all z. Let y2 → ∞ in (5.5). Then

F̄ ∗
0 (y1; z))F̄

∗
1 (y1; z) = F̄0(y1; z))F̄1(y1; z),−∞ < y1 <∞(5. 6)

for all z. Let y1 → ∞ in (5.5). We get that

F ∗
0 (y2; z)F

∗
2 (y2; z) = F0(y1; z))F2(y2; z),−∞ < y2 <∞(5. 7)

for all z. Combining the relations (5.5) to (5.7), we get that

(5. 8)

(F ∗
0 (y2; z)− F ∗

0 (y1; z))F̄
∗
1 (y1; z)F

∗
2 (y2; z)F̄0(y1; z))F̄1(y1; z)F0(y1; z))F2(y2; z)

= (F0(y2; z)− F0(y1; z))F̄1(y1; z)F2(y2; z)F̄ ∗
0 (y1; z))F̄

∗
1 (y1; z)F

∗
0 (y2; z))F

∗
2 (y2; z)
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for −∞ < y1 ≤ y2 <∞ and for all z. Applying the conditions (5.1) to (5.3), we have

F ∗
0 (y2; z)− F ∗

0 (y1; z)

F0(y2; z)− F0(y1; z)
=
F̄ ∗
0 (y1)

F̄0(y1)

F ∗
0 (y1)

F0(y1)
(5. 9)

for −∞ ≤ a < y1 < y2 < b ≤ ∞ and for all z. Since F ∗
0 (x0; z) = F0(x0; z) = q, it follows

that, for −∞ ≤ a < y ≤ x0,

F ∗
0 (x0; z)− F ∗

0 (y; z)

F0(x0; z)− F0(y; z)
=
F̄ ∗
0 (y)

F̄0(y)
.(5. 10)

Hence

F ∗
0 (y; z) = F0(y; z),−∞ < y ≤ x0(5. 11)

for allz. Similar arguments show that

F ∗
0 (y; z) = F0(y; z), x0 ≤ y <∞.(5. 12)

for all z. Equations (5.6) and (5.7) prove that

F ∗
1 (y; z) = F1(y; z) and F ∗

2 (y; z) = F2(y; z),−∞ < y <∞(5. 13)

for all z.

Remarks : (i) Given the conditional joint distribution of (Y1, Y2) with Y1 = min(X0, X1)

and Y2 = max(X0, X2) given Z = z, one can explicitly compute the conditional distributions

of X0, X1, X2 given Z = z, following the methods in Kotlarski (1978). Let

H(u, v; z) = P (Y1 > u, Y2 ≤ v|Z = z)(5. 14)

= F̄1(u; z)F2(v; z)[F0(v; z)− F0(u; z)]

for −∞ < u < v <∞. It can be shown that

F0(x; z) =
q[H(x, x0; z)−H(−∞, x0; z)H(x,∞; z)]

qH(x, x0; z)−H(−∞, x0; z)H(x,∞; z)
if x ≤ x0(5. 15)

=
qH(x0,∞; z)H(−∞, x; z)

H(x0,∞; z)H(−∞, x; z)− (1− q)H(x0, x; z)
if x ≥ x0,

F̄1(x; z) =
H(x,∞; z)

F̄0(x; z)
,−∞ < x <∞(5. 16)

and

F2(y; z) =
H(−∞, y; z)

F0(y; z)
,−∞ < y <∞,(5. 17)
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for all z where x0 and q are as defined in Theorem 5.1. These results follow by methods in

Kotlarski (1978).

(ii) Following results in Kotlarski (1978) and Prakasa Rao (1992), it is possible to obtain

other results similar to those in Sections 2 to 5 based on identifiability from product and

minimum (or maximum) or identifiability from products and sums or identifiability from

sum and maximum (or minimum).

6 Identifiability by maxima of several random variables

Let X1, X2, . . . , Xn be conditionally independent positive random variables given a random

variable Z. Let Fi(x; z) be the distribution function of Xi given Z = z for i = 1, . . . , n.

Suppose that Fi(x; z) > 0 for all x > 0 and for all z for i = 1, . . . , n. Define

Y1 = max(a1X1, . . . , anXn)(6. 1)

Y2 = max(b1X1, . . . , bnXn)

where ai > 0, bi > 0 for i = 1, . . . , n and ai
bi

̸= aj
bj

for 1 ≤ i ̸= j ≤ n.

Theorem 6.1 : Under the conditions stated above, the conditional joint distribution of

(Y1, Y2) given Z = z uniquely determines the conditional distribution of the random variable

Xi given Z = z for 1 ≤ i ≤ n.

Proof: Let F ∗
j (.; z) be an alternate possible conditional distribution of Xj given Z = z for

1 ≤ j ≤ n. Note that

H(t, s; z) ≡ P (Y1 ≤ t, Y2 ≤ s|Z = z)(6. 2)

= Πn
j=1Fj(min(

t

aj
,
s

bj
); z)

for 0 ≤ t, s <∞ and for all z. Since F ∗
j (.; z) is an alternate possible conditional distribution

of Xj for 1 ≤ j ≤ n, it follows that

Πn
j=1Fj(min(

t

aj
,
s

bj
); z) = Πn

j=1F
∗
j (min(

t

aj
,
s

bj
); z)(6. 3)
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for 0 ≤ t, s < ∞ and for all z. Let vj(t; z) = logFj(
t
bj
; z)− logF ∗

j (
t
bj
; z). The equation (6.3)

can be written in the form

n∑
j=1

vj(min(cjt, s); z) = 0, 0 ≤ t, s <∞(6. 4)

for all z where cj =
bj
aj
, 1 ≤ j ≤ n are pairwise distinct. Without loss of generality, assume

that 0 < c1 < . . . < cn. Let t > 0 and s = τt where cn−1 < τ < cn. Then the equation (6.4)

can be written in the form

n−1∑
j=1

vj(cjt; z) + vn(τt; z) = 0, 0 < t <∞(6. 5)

for all z. This equation shows that vn(, ; z) is a constant depending only on z on the interval

(cn−1t, cnt) for any t > 0. Since t > 0 is arbitrary, it follows that vn(.; z) is constant depending

only on z on the interval (0,∞). Since vj(t; z) → 0 as t→ ∞, it follows that vn(t; z) = 0 for

t > 0 for all z. Repeating this argument, it is easy to see that

vj(t; z) = 0, 1 ≤ j ≤ n− 1, 0 < t <∞(6. 6)

for all z. This in turn implies that

Fj(
t

bj
; z) = F ∗

j (
t

bj
; z), 0 < t <∞, 1 ≤ j ≤ n(6. 7)

from the definition of vj(.; z). Since t > 0 is arbitrary, it follows that

Fj(t; z) = F ∗
j (t; z), 0 < t <∞, 1 ≤ j ≤ n.(6. 8)

Remarks : The result stated in Theorem 6.1 does not hold for random variables Xi, 1 ≤
i ≤ n taking positive and negative values with positive probability. This can be seen by the

Example 2.8.1 in Prakasa Rao (1992). However the following result holds.

Theorem 6.2 : Suppose that the random variables Xi, 1 ≤ i ≤ n are conditionally indepen-

dent given a random variable Z. Let Fi(x; z) be the conditional distribution function of Xi

given Z = z, for 1 ≤ i ≤ n. Further suppose that Fj(x; z) > 0, 1 ≤ j ≤ n for all x ∈ R and

for all z and P (Xj = 0|Z = z) = 0, 1 ≤ j ≤ n. Define

Y1 = max(a1X1, . . . , anXn)(6. 9)

Y2 = max(b1X1, . . . , bnXn)
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where ai > 0, bi > 0 for i = 1, . . . , n and ai
bi

̸= aj
bj

for 1 ≤ i ̸= j ≤ n. Then the conditional

joint distribution of (Y1, Y2) given Z = z uniquely determines the conditional distribution of

the random variable Xi given Z = z for 1 ≤ i ≤ n.

Proof: Following the arguments in the proof of Theorem 6.1, we get that

n∑
j=1

vj(min(cjt, s); z) = 0,−∞, t, s <∞(6. 10)

for all z where cj =
aj
bj

are pairwise distinct and 0 < c1 < . . . < cn. Following the same

arguments again, it follows that vj(t; z) = 0, t > 0 for all z. Suppose that t < 0. Let s =

τt, τ ∈ (c1, c2). Then the equation (6.4) takes the form

v1(τt; z) +
n∑

j=2

vj(cjt; z) = 0(6. 11)

for all z. Hence v1(.; z) is a constant depending only on z on the interval (c2t, c1t). Since

t < 0 is arbitrary, it follows that v(t; z) = 0 on the interval (−∞, 0). Note that v1(x; z) is

continuous at x = 0. Hence v1(0; z) = 0 for all z. Therefore v(1t; z) = 0 for all t and for all z.

Combining with earlier remarks, we get that v1(t; z) = 0 for all t and for all z. By repeating

the arguments recursively, we get that vj(t; z) = 0,−∞ < t < ∞, 1 ≤ j ≤ n for all z. Hence

Fj(t; z) = F ∗
j (t; z),−∞ < t <∞, 1 ≤ j ≤ n for all z.

Proofs of Theorems 6.1 and 6.2 are akin to those in Klebanov (1973) in the independent

case.
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