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1 Introduction

Change-point problems or disorder problems have been of interest to statisticians for their ap-

plications and for probabilists for their challenging problems. Recent applications of change-

point methods include finance, statistical image processing and edge detection in noisy images

which can be considered as a multidimensional change-point and boundary detection prob-

lem. Estimation of change-points in economic models such as split or two-phase regression

and changes in hazard or failure rates in modelling life times after bone-marrow transplan-

tation of leukemia patients is of practical interest. A study of change-point problems and

their applications are discussed in the monograph on change-point problems edited by Carl-

stein et al. [3]. Csorgo and Horvath [5] discuss limit theorems in change point analysis.

Deshayes and Picard [7] study asymptotic distributions of tests and estimators for change

point in the classical statistical model of independent observations (cf. Prakasa Rao [25]).

The problem of estimation of both the change point and parameters in the drift and diffusion

has been considered recently by many authors in continuous as well as discrete time. The

disorder problem for diffusion type processes, that is, processes driven by Wiener process,
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is investigated in Kutoyants [15], Kutoyants [16] and more recently in Kutoyants [17]. Ku-

toyants [16]considered the problem of simultaneous estimation of the trend parameter and

change point for diffusion type processes. Prakasa Rao [26] gives a comprehensive survey on

problems of estimation for diffusion type processes observed over in continuous time or over

discrete time. For some recent work on the change point problems for diffusion processes, see

Lee et al. [19], Song and Lee [30], De Gregorio and Iacus [6] and Iacus and Yoshida [10],[11].

Statistical inference for diffusion type processes satisfying stochastic differential equations

driven by Wiener processes have been studied earlier and a comprehensive survey of various

methods is given in Prakasa Rao [26]. There has been a recent interest to study similar

problems for stochastic processes driven by a fractional Brownian motion (fBm) in view of

their applications for modeling time series which are long-range dependent. In a recent paper,

Kleptsyna and Le Breton [13] studied parameter estimation problems for fractional Ornstein-

Uhlenbeck type process. This is a fractional analogue of the Ornstein-Uhlenbeck process,

that is, a continuous time first order autoregressive process X = {Xt, t ≥ 0} which is the

solution of a one-dimensional homogeneous linear stochastic differential equation driven by

a fractional Brownian motion (fBm) WH = {WH
t , t ≥ 0} with Hurst parameter H ∈ [1/2, 1).

Such a process is the unique Gaussian process satisfying the linear integral equation

Xt = X0 + θ

∫ t

0
Xsds+ σWH

t , t ≥ 0.(1. 1)

They investigate the problem of estimation of the parameters θ and σ2 based on the obser-

vation {Xs, 0 ≤ s ≤ T} and prove that the maximum likelihood estimator θ̂T is strongly

consistent as T → ∞. A survey of results on statistical inference for fractional diffusion pro-

cesses, that is, processes driven by a fractional Brownian motion, is given in Prakasa Rao [27].

For more recent work on parametric estimation for fractional Ornstein-Uhlenbeck process,

see Xiao et al. [31], Hu and Nualart [8] and Hu et al. [9].

Our aim in this paper is to consider estimation of the change point τ for a model of

fractional diffusion process with small diffusion coefficient. We consider the model

dXt = St(τ,X) dt+ ϵ dWH
t , X0 = x0, 0 ≤ t ≤ T(1. 2)

where {WH
t , 0 ≤ t ≤ T} is the fractional Brownian motion with known Hurst index H ∈

[12 , 1), St(τ, x) = ht(x) if t ∈ [0, τ ] and St(τ, x) = gt(x) if t ∈ (τ, T ], with ht(x) and gt(x)

known functions. We estimate the change point τ by the maximum likelihood method (τ̂ϵ)

and to study its asymptotic properties following the methods in Ibragimov and Khasminskii
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[12] and Prakasa Rao [24]. We show that the normalized sequence

ϵ−2(τ̂ϵ − τ)

has a limiting distribution as ϵ→ 0.We note that the change point problems belong to a class

of non-regular statistical problems in the sense that the rate of convergence of the estimator

here is higher than the standard rate of convergence of the maximum likelihood estimator of

a parameter in the classical case of independent and identically distributed observations with

a density function which is twice differentiable and with finite positive Fisher information.

This was earlier observed by Chernoff and Rubin [4], Deshayes and Picard [7] in their study

of estimation of the change point and by Prakasa Rao [24] in his study of estimation of the

location of the cusp of a continuous density. The rate of convergence of the estimator τ̂ϵ

observed here is ϵ2 as ϵ→ 0.

2 Preliminaries

Let (Ω,F , (Ft), P ) be a stochastic basis satisfying the usual conditions and the processes

discussed in the following are (Ft)-adapted. Further the natural filtration of a process is

understood as the P -completion of the filtration generated by this process. Let WH =

{WH
t , t ≥ 0} be a normalized fractional Brownian motion with Hurst parameter H ∈ (0, 1),

that is, a Gaussian process with continuous sample paths such that WH
0 = 0, E(WH

t ) = 0

and

E(WH
s W

H
t ) =

1

2
[s2H + t2H − |s− t|2H ], t ≥ 0, s ≥ 0.(2. 1)

Let us consider a stochastic process Y = {Yt, t ≥ 0} defined by the stochastic integral

equation

Yt =

∫ t

0
C(s)ds+

∫ t

0
B(s)dWH

s , t ≥ 0(2. 2)

where C = {C(t), t ≥ 0} is an (Ft)-adapted process and B(t) is a non-vanishing non-random

function. For convenience we write the above integral equation in the form of a stochastic

differential equation

dYt = C(t)dt+B(t)dWH
t , t ≥ 0;Y0 = 0(2. 3)

driven by the fractional Brownian motion WH . The integral∫ t

0
B(s)dWH

s(2. 4)
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is not a stochastic integral in the Ito sense but one can define the integral of a deterministic

function with respect to a fractional Brownian motion in a natural sense (cf. Norros et al.

[21], Alos et al. [1]). Even though the process Y is not a semimartingale, one can associate

a semimartingale Z = {Zt, t ≥ 0} which is called a fundamental semimartingale such that

the natural filtration (Zt) of the process Z coincides with the natural filtration (Yt) of the

process Y (Kleptsyna et al. [14]). Define, for 0 < s < t,

kH = 2H Γ (
3

2
−H)Γ(H +

1

2
),(2. 5)

κH(t, s) = k−1
H s

1
2
−H(t− s)

1
2
−H ,(2. 6)

λH =
2H Γ(3− 2H)Γ(H + 1

2)

Γ(32 −H)
,(2. 7)

wH
t = λ−1

H t2−2H ,(2. 8)

and

MH
t =

∫ t

0
κH(t, s)dWH

s , t ≥ 0.(2. 9)

The process MH is a Gaussian martingale, called the fundamental martingale (cf. Norros et

al. [21]) and its quadratic variation is given by < MH
t >= wH

t . Further more the natural

filtration of the martingale MH coincides with the natural filtration of the fBm WH . In fact

the stochastic integral ∫ t

0
B(s)dWH

s(2. 10)

can be represented in terms of the stochastic integral with respect to the martingale MH .

For a measurable function f on [0, T ], let

Kf
H(t, s) = −2H

d

ds

∫ t

s
f(r)rH− 1

2 (r − s)H− 1
2dr, 0 ≤ s ≤ t(2. 11)

when the derivative exists in the sense of absolute continuity with respect to the Lebesgue

measure (see Samko et al. [29] for sufficient conditions). The following result is due to

Kleptsyna et al. [14].

Therorem 2.1: Let MH be the fundamental martingale associated with the fractional

Brownian motion WH defined by (2.9). Then∫ t

0
f(s)dWH

s =

∫ t

0
Kf

H(t, s)dMH
s , t ∈ [0, T ](2. 12)

P -a.s. whenever both sides are well defined.
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Suppose the sample paths of the process {C(t)
B(t) , t ≥ 0} are smooth enough (see Samko et

al. [29]) so that

QH(t) =
d

dwH
t

∫ t

0
κH(t, s)

C(s)

B(s)
ds, t ∈ [0, T ](2. 13)

is well-defined where wH and κH are as defined in (2.8) and (2.6) respectively and the

derivative is understood in the sense of absolute continuity. The following theorem due to

Kleptsyna et al. [14] associates a fundamental semimartingale Z associated with the process

Y such that the natural filtration (Zt) of Z coincides with the natural filtration (Yt) of Y.

Theorem 2.2: Suppose the sample paths of the process QH defined by (2.13) belong P -a.s

to L2([0, T ], dwH) where wH is as defined by (2.8). Let the process Z = (Zt, t ∈ [0, T ]) be

defined by

Zt =

∫ t

0
κH(t, s)B−1(s)dYs(2. 14)

where the function κH(t, s) is as defined in (2.6). Then the following results hold:

(i) The process Z is an (Ft) -semimartingale with the decomposition

Zt =

∫ t

0
QH(s)dwH

s +MH
t(2. 15)

where MH is the fundamental martingale defined by (2.9),

(ii) the process Y admits the representation

Yt =

∫ t

0
KB

H(t, s)dZs(2. 16)

where the function KB
H is as defined in (2.11), and

(iii) the natural filtrations (Zt) and (Yt) coincide.

Kleptsyna et al. [14] derived the following Girsanov-type formula as a consequence of the

Theorem 2.2.

Theorem 2.3: Suppose the assumptions of Theorem 2.2 hold. Define

ΛH(T ) = exp{−
∫ T

0
QH(t)dMH

t − 1

2

∫ t

0
Q2

H(t)dwH
t }.(2. 17)

Suppose that E(ΛH(T )) = 1. Then the measure P ∗ = ΛH(T )P is a probability measure and

the probability measure of the process Y under P ∗ is the same as that of the process V
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defined by

Vt =

∫ t

0
B(s)dWH

s , 0 ≤ t ≤ T(2. 18)

under the probability measure P.

3 Assumptions and main result

Let a process X = {Xt, 0 ≤ t ≤ T} be observed over the time interval [0, τ ] and suppose it

follows the stochastic integral equation

Xt = x0 +

∫ t

0
hu(X)du+ ϵ

∫ t

0
dWH

u , t ∈ [0, τ ](3. 1)

and suppose the process X∗ = {X∗(t), τ < t ≤ T} is observed over the time interval (τ, T ]

satisfying the stochastic integral equation

X∗
t = Xτ +

∫ t

0
gu(X

∗)du+ ϵ

∫ t

τ
dWH

u , t ∈ (τ, T ].(3. 2)

where WH is the fractional Brownian motion with known Hurst parameter H ∈ [12 , 1). Let

St(τ, x) = ht(x), 0 ≤ t ≤ τ

= gt(x), τ < t ≤ T.

Suppose that the change point τ ∈ [t1, t2] ⊂ [0, T ] where t1 and t2 are known but arbitrary

in the interval [0, T ]. We assume that the functions gt(.) and ht(.) are known but the change

point τ is unknown. For convenience, we denote the process X∗ by X over the interval (τ, T ].

It is required to estimate the change point τ from the realization of X over the interval

[0, T ]. Let τ̂ϵ denote the maximum likelihood estimator (MLE) of τ. We are interested in the

asymptotic behaviour of the MLE τ̂ϵ as ϵ→ 0.

Let x = {x(t), 0 ≤ t ≤ T} with x(0) = x0 be the solution of the ordinary differential

equation

dx(t)

dt
= ht(x), 0 ≤ t ≤ τ

= gt(x), τ < t ≤ T.

We assume that the trend coefficient St(τ,X) satisfies the following conditions which

ensure the existence and the uniqueness of a unique solution of the equation (1.2).
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(A.1) There exists a constant L > 0 such that

|St(τ,X)− St(τ, Y )| ≤ L|Xt − Yt|, 0 ≤ t, τ ≤ T.

(A.2) There exists a constant M > 0 such that |St(τ,X)| ≤M(1 + |Xt|), t, τ ∈ [0, T ].

The existence and the uniqueness of the solution of the stochastic differential equation

(1.2) follow from the results in Nualart and Rascanu [22].

The general method of obtaining the asymptotic properties of the maximum likelihood

estimator (MLE) for the change point τ by Taylor’s expansion of the log-likelihood is not

applicable in this situation due to non-differentiability of the likelihood ratio with respect

to the parameter τ. Therefore we follow the technique used by Prakasa Rao [24], Ibragimov

and Khasminskii [12], Kutoyants [15] and others. We prove the weak convergence of the

appropriately normalized log-likelihood ratio process and appeal to the continuous mapping

theorem to study the asymptotic behaviour of the MLE.

Let

At(τ, x) =
d

dwH
t

∫ t

0
κH(t, s)Ss(τ, x)ds, 0 ≤ t ≤ T.(3. 3)

Consider the transformed processes

At(τ,X) =
d

dwH
t

∫ t

0
κH(t, s)Ss(τ,X)ds, 0 ≤ t ≤ T,(3. 4)

Yt =

∫ t

0
κH(t, s)dX(s), 0 ≤ t ≤ T(3. 5)

and the martingale

MH
t =

∫ t

0
κH(t, s)dWH

s , 0 ≤ t ≤ T.(3. 6)

Then the process Y = {Yt, 0 ≤ t ≤ T} defined by (3.5) satisfies the stochastic differential

equation

dYt = At(τ,X)dwH
t + ϵ dMH

t , 0 ≤ t ≤ T(3. 7)

where MH is the fundamental martingale given by (3.6) and Y is a semimartingale (cf.

Kleptsyna et al. [14]).

7



(A.3) Suppose the function At(τ, x) is Lipschitz in x uniformly in τ and t, that is, there exists

a constant C > 0 independent of τ, t such that

|At(τ, x)−At(τ, y)| ≤ C|x− y|, 0 ≤ t ≤ T, 0 ≤ t1 ≤ τ ≤ t2 ≤ T.

Let

∆t = At(τ + ϵ2v,X)−At(τ,X)(3. 8)

and

∆̄t = At(τ + ϵ2v, x)−At(τ, x)(3. 9)

for a given v ∈ R.

(A.4)(i) Let

δt = At(τ + ϵ2v1, X)−At(τ + ϵ2v2, X)

with τ + ϵ2v1 = θ1 and τ + ϵ2v2 = θ2. Suppose there exists a neighbourhood Nτ of τ such

that

sup
θ1,θ2∈Nτ

sup
0≤t≤T

Eθ1(δ
8
t ) <∞.(3. 10)

(A.4)(ii) Suppose that

Jτ = lim
ϵ→0,t→τ,t>τ

∆̄t = lim
t→τ+0,t>τ

d

dwH
t

∫ t

0
κH(t, s)(gs(x)− hs(x))I[τ≤s<τ+ϵ2v]ds

exists, is independent of v > 0, and, for all v > 0,

lim
ϵ→0

sup
[τ≤t<τ+ϵ2v]

|∆̄t − Jt|2t1−2H = 0;

and

lim
ϵ→0

sup
[τ≤t<τ+ϵ2v]

|∆̄2
t − J2

t |t1−2H = 0.

In addition to the conditions (A.1) to (A.4), we assume that the following condition holds:

(A.5) There exist constants c > 0 and C > 0 possibly depending on H and T such that

cvβ ≤ ϵ−2
∫ τ+ϵ2v

τ
[At(τ + ϵ2v, x)−At(τ, x)]

2dwH
t ≤ Cvβ, τ ∈ [t1, t2],

for some β > 0.
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The filtrations of the transformed process Y and the process X coincide by Theorem

1 of Kleptsyna et al. [14] and hence the problem of estimation of the parameter τ from

the process X and the problem of estimation of the parameter τ from the process Y are

equivalent. We now consider the problem of estimation of the change point τ based on

the observation {Yt, 0 ≤ t ≤ T} by the method of maximum likelihood. Let τϵ denote the

maximum likelihood estimator based on the observation {Yt, 0 ≤ t ≤ T}. Let

J∗
τ = Jτ

√
τ1−2Hλ−1

H .(3. 11)

and

L0(v) = J∗
τW1(v)−

1

2
J∗
τ
2v if v ≥ 0(3. 12)

= J∗
τW2(−v) +

1

2
J∗
τ
2v if v < 0

where {W1(v), v ≥ 0} and {W2(v), v ≥ 0} are independent standard Wiener processes.

We now state the main result of this paper.

Theorem 3.1: Suppose the conditions (A.1) − (A.5) hold. Let τ denote the true change

point and τ̂ϵ denote the maximum likelihood estimator of τ based on the observation of the

process X satisfying the stochastic differential system defined by (3.1) and (3.2). Then, as

ϵ→ 0, the normalized random variable

ϵ−2(τ̂ϵ − τ)

converges in law to a random variable ψ whose distribution is the distribution of location of

the maximum of the process {L0(v),−∞ < v <∞} as defined above.

4 Weak convergence of the log-likelihood ratio process

At first, we state a lemma which gives upper bounds on the differenceXt−xt and Eτ (Xt−xt)2

where the process {Xt, 0 ≤ t ≤ T} satisfies the stochastic differential equation system defined

by the equations (3.1) and (3.2) and the function xt is the solution of the corresponding

ordinary differential equation discussed above. Throughout the following discussion, we shall

denote an arbitrary positive constant by C which might be different from one inequality to

the other.
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Lemma 4.0: Let the trend function Sτ (t, x) satisfy the conditions (A.1) and (A.2). Then,

with probability one,

(i)|Xt − xt| ≤ eLtϵ|WH
t |

and

(ii) sup
0≤t≤T

Eτ (Xt − xt)
2 ≤ e2LT ϵ2T 2H .

For the proof of Lemma 4.0, see Prakasa Rao [27], p. 131.

In view of Lemma 4.0 and the condition (A.3), it follows that there exists a constant C

such that

sup
t1≤τ ′≤t2

sup
0≤t≤T

Eτ [At(τ
′, X)−At(τ

′, x)]2 ≤ Cϵ2.(4. 1)

for τ ∈ [t1, t2].

In particular, it follows that

sup
0≤t≤T

Eτ |∆t − ∆̄t|2 ≤ Cϵ2, τ ∈ [t1, t2].(4. 2)

Let Pτ be the probability measure generated by the process Y on the space C[0, T ]

associated with the uniform topology when τ is the true change point. Consider the log-

likelihood ratio process

Lϵ(v) = log
dPτ+ϵ2v

dPτ
(4. 3)

=
1

ϵ

∫ T

0

[
At(τ + ϵ2v,X)−At (τ,X)

]
dMH

t

− 1

2ϵ2

∫ T

0

[
At(τ + ϵ2v,X)−At (τ,X)

]2
dwH

t

for fixed v such that 0 ≤ τ, τ + ϵ2v ≤ T.

Theorem 4.1: Let −∞ < a < b < ∞. Under the conditions (A.1) to (A.4), the family

of probability measures generated by the log-likelihood ratio processes {Lϵ(v), v ∈ [a, b]}
on C[a, b], associated with the uniform norm topology, converge weakly to the probability

measure generated by the process {L0(v), v ∈ [a, b]} on C[a, b] as ϵ→ 0.

From the general theory of weak convergence of probability measures on C[a, b] associated

with uniform norm topology (cf. Billingsley [2], Parthasarathy [23], Prakasa Rao [25]), in
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order to prove Theorem 4.1, it is sufficient to prove that the finite dimensional distributions of

the process {Lϵ(v), a ≤ v ≤ b} converge to the corresponding finite dimensional distributions

of the process {L0(v), a ≤ v ≤ b} and the family of probability measures generated by the

processes {Lϵ(v), a ≤ v ≤ b} for different ϵ is tight.

5 Proof of Theorem 4.1

Before we give a proof of Theorem 4.1, we prove some related lemmas.

Lemma 5.1: Under the conditions (A.1)− (A.3), the the finite distributions of the process

{Lϵ(v), a ≤ v ≤ b} converge to the corresponding finite dimensional distributions of the

process {L0(v), a ≤ v ≤ b} as ϵ→ 0.

Proof: We will first investigate the convergence of the one-dimensional marginal distribu-

tions of the process Lϵ(v) as ϵ → 0. The convergence of other classes of finite dimensional

distributions follows from the Cramer-Wold device.

Suppose v > 0. It can be seen that ∆t = 0 and ∆t = 0 for t ∈ [0, τ) and t ∈ [τ + ϵ2v, T ].

Note that

Lϵ(v) =
1

ϵ

∫ τ+ϵ2v

τ
∆tdM

H
t − 1

2ϵ2

∫ τ+ϵ2v

τ
∆2

tdw
H
t

=
1

ϵ

∫ τ+ϵ2v

τ
(∆t −∆t)dM

H
t +

1

ϵ

∫ τ+ϵ2v

τ
∆tdM

H
t

− 1

2ϵ2

∫ τ+ϵ2v

τ
∆2

tdw
H
t

= I1 + I2 + I3 (say).

Now, for any ϵ1 > 0,

P (|I1| ≥ ϵ1) ≤ 1

ϵ21ϵ
2

∫ τ+ϵ2v

τ
Eτ |∆t −∆t|2dwH

t

≤ C

ϵ21ϵ
2

sup
0≤t≤T

Eτ |∆t −∆t|2
∫ τ+ϵ2v

τ
t1−2Hdt

≤ C

ϵ21ϵ
2
[(τ + ϵ2v)2−2H − τ2−2H ] sup

0≤t≤T
Eτ |∆t −∆t|2

≤ C

ϵ21ϵ
2
[(τ + ϵ2v)2−2H − τ2−2H ]ϵ2 (by (A.3))
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for some positive constant C depending on H and T. Hence I1
p−→ 0 as ϵ→ 0. Observe that

I2 =
1

ϵ

∫ τ+ϵ2v

τ
∆tdM

H
t

=
1

ϵ

∫ τ+ϵ2v

τ
(∆t − Jτ )dM

H
t +

1

ϵ

∫ τ+ϵ2v

τ
JτdM

H
t

=
1

ϵ

∫ τ+ϵ2v

τ
(∆t − Jτ )dM

H
t +

1

ϵ
Jτ (M

H
τ+ϵ2v −MH

τ ).

Note that

Eτ |
1

ϵ

∫ τ+ϵ2v

τ
(∆t − Jτ )dM

H
t |2 =

1

ϵ2

∫ τ+ϵ2v

τ
|∆t − Jτ |2dwH

t

= C
1

ϵ2

∫ τ+ϵ2v

τ
|∆t − Jτ |2t1−2Hdt

= C|∆η − Jτ |2η1−2H

for some constant C > 0 and for some η such that τ < η < τ + ϵ2v by the mean value

theorem. The last term tends to zero as ϵ → 0 by the condition (A.3). Thus the random

variable I2 has the Gaussian distribution with mean zero and variance

1

ϵ2
Eτ

(∫ τ+ϵ2v

τ
∆tdM

H
t

)2

=
1

ϵ2

∫ τ+ϵ2v

τ
∆

2
tdw

H
t

=
1

ϵ2

∫ τ+ϵ2v

τ
(∆

2
t − J2

τ )dw
H
t +

1

ϵ2

∫ τ+ϵ2v

τ
J2
τ dw

H
t

= vλ−1
H J2

τ τ
1−2H + o(1).

The equality stated above follows again by an application of the mean value theorem under

the condition (A.3). Furthermore

I3 = − 1

2ϵ2

∫ τ+ϵ2v

τ
∆2

tdw
H
t

= − 1

2ϵ2

[∫ τ+ϵ2v

τ
(∆t −∆t +∆t)

2dwH
t

]

= − 1

2ϵ2

[∫ τ+ϵ2v

τ

{
(∆t −∆t)

2 +∆
2
t + 2(∆t −∆t)∆t

}
dwH

t

]
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= op(1)−
1

2ϵ2

∫ τ+ϵ2v

τ
∆

2
tdw

H
t

= op(1)−
1

2
vλ−1

H J2
τ τ

1−2H

as ϵ→ 0, again, by the mean value theorem under the condition (A.3). As a consequence of

the above computations, we get that the random variable Lϵ(v) is asymptotically Gaussian

with the mean −1
2J

∗
τ
2v and the variance J∗

τ
2v. Similar analysis of the above results can be

done for the case v < 0. This completes the proof of Lemma 5.1.

Remarks: We have proved the convergence of the univariate distributions of the process

{Lϵ(v), a ≤ v ≤ b} as ϵ → 0, after proper scaling of the process. Convergence of all the

other finite dimensional distributions of the process {Lϵ(v), a ≤ v ≤ b} as ϵ→ 0, after proper

scaling, follows by an application of the Cramer-Wold device. It can be checked that the

covariance matrix of the limiting distribution of (Lϵ(v1), Lϵ(−v2)) for v1 > 0, v2 > 0, as

ϵ → 0, after proper scaling will be a diagonal matrix. Since it is the covariance matrix of a

bivariate normal distribution, it will in turn imply the independence of the standard Wiener

processes W1 and W2 in the definition of the limiting process L0 given by (3.1).

We now state two lemmas which will be used in the following computations.

Lemma 5.2: Let {Dt, 0 ≤ t ≤ T} be a random process such that sup0≤t≤T E(D4
t ) ≤ γ <∞.

Then, for 0 ≤ θ2 ≤ θ1 ≤ T,

E([

∫ θ1

θ2
Dtdt]

4) ≤ |θ1 − θ2|3
∫ θ1

θ2
E[D4

t ]dt ≤ γ|θ1 − θ2|4.

The inequality given above is an easy consequence of the Holder inequality.

The next lemma gives an inequality for the 4-th moment of a stochastic integral with

respect to a martingale which is also of independent interest.

Lemma 5.3: Let the process {ft, 0 ≤ t ≤ T} be a random process adapted to a square

integrable martingale {Mt,Ft, t ≥ 0} with the quadratic variation < M >t such that∫ T

0
E(f4s )d < M >s<∞.

Then

E((

∫ T

0
ftdMt)

4) ≤ 36 < M >T

∫ T

0
E(f4t )d < M >t .

13



and, in general, for 0 ≤ θ2 ≤ θ1 ≤ T,

E[(

∫ θ1

θ2
ftdMt)

4] ≤ 36(< M >θ1 − < M >θ2)

∫ θ1

θ2
E[f4t ]d < M >t .

Proof : We prove the first part of the lemma. The second part is an easy consequence of

the first part. Let

ψ(t) =

∫ t

0
fsdMs.

Applying the Ito-type lemma for stochastic integrals with respect to martingales for the

function g(ψ(t)) = (ψ(t))4, it follows that

(

∫ t

0
fsdMs)

4 = 4

∫ t

0
(

∫ s

0
fudMu)

4fsdMs + 6

∫ t

0
(

∫ s

0
fudMu)

2f2s d < M >s .

Taking expectations on both sides of the above equation, we get that

E(

∫ T

0
ftdMt)

4 = 6

∫ T

0
E((

∫ s

0
fudMu)

2f2s )d < M >s .(5. 1)

Hence

E(

∫ T

0
ftdMt)

4 ≤ 6[

∫ T

0
E(

∫ s

0
fudMu)

4d < M >s]
1/2(

∫ T

0
E[f4s ]d < M >s)

1/2(5. 2)

by an application of the Cauchy-Schwarz inequality. It is clear from the equation (5.1) that

the function

E(

∫ t

0
fsdMs)

4

is a non-decreasing function of t and hence∫ T

0
E(

∫ s

0
fudMu)

4d < M >s≤
∫ T

0
E(

∫ T

0
fudMu)

4d < M >s .

Using this bound to estimate the first term on the right side of the inequality (5.2), it follows

that

E(

∫ T

0
fsdMs)

4 ≤ 6((< M >T − < M >0)E(

∫ T

0
fsdMs)

4)1/2(

∫ T

0
E(f4s )d < M >s)

1/2.

From this equation, it now follows that

E(

∫ T

0
fsdMs)

4 ≤ 36(< M >T − < M >0)(

∫ T

0
E(f4s )d < M >s).

Lemma 5.4: Let Γϵ(v) = expLϵ(v). Suppose the conditions (A.1) − (A.4) hold. Then, for

any compact set K ⊂ [0, T ] there exist constants C > 0 depending on H and T such that

sup
τ∈K

Eτ

∣∣∣∣Γ 1
4
ϵ (v2)− Γ

1
4
ϵ (v1)

∣∣∣∣4 ≤ C[(v1 − v2)
4 + (v1 − v2)

2], a ≤ v1, v2 ≤ b.

14



Proof : Without loss of generality, let v1 > v2,

δt = At(τ + ϵ2v1, X)−At(τ + ϵ2v2, X)

and

δt = At(τ + ϵ2v1, x)−At(τ + ϵ2v2, x).

Let τ + ϵ2v1 = θ1 and τ + ϵ2v2 = θ2. Let

Rt = exp[
1

4ϵ

∫ t

0
δsdM

H
s − 1

8ϵ2

∫ t

0
δ2sdw

H
s ], R0 = 1.

Note that the process Rt is the process

(
dPθ1

dPθ2

(X

) 1
4

and, by the Ito formula, we have

dRt = − 3

32ϵ2
δ2tRtdw

H
t +

1

4ϵ
δtRtdM

H
t .

Hence

RT = 1− 3

32 ϵ2

∫ T

0
δ2tRtdw

H
t +

1

4 ϵ

∫ T

0
δtRtdM

H
t .

Note that

Eτ

∣∣∣∣Γ 1
4
ϵ (v2)− Γ

1
4
ϵ (v1)

∣∣∣∣4
= Eτ (

dPθ2

dPθ
|1−RT |4) = Eθ2(|1−RT |4)

≤ C
1

ϵ8
Eθ2

∣∣∣∣∣
∫ T

0
δ2tRtdw

H
t

∣∣∣∣∣
4

+ C
1

ϵ4
Eθ2

∣∣∣∣∣
∫ T

0
δtRtdM

H
t

∣∣∣∣∣
4

where C is an absolute constant. In order to get the bounds for the expectations of the

integrals in the above inequality, we now use the Lemmas 5.2 and 5.3.

As a consequence of the Lemma 5.2, it follows that there exists a positive constant C

depending on H and T such that

Eθ2 |
1

ϵ2

∫ T

0
δ2tRtdw

H
t |4

= Eθ2 [
1

ϵ2

∫ θ2

0
δ2tRtdw

H
t +

1

ϵ2

∫ T

θ1
δ2tRtdw

H
t +

1

ϵ2

∫ θ1

θ2
δ2tRtdw

H
t ]4

15



= Eθ2 |
1

ϵ2

∫ θ1

θ2
δ2tRtdw

H
t |4

= Eθ2 |
1

ϵ2

∫ θ1

θ2
δ2tRtλ

−1
H (2− 2H)t1−2Hdt|4

≤ C
1

ϵ8
(θ1 − θ2)

3
∫ θ1

θ2
Eθ2 [δ

2
tRt]

4t4−8Hdt.

Now

sup
0≤t≤T

Eθ2([δ
2
tRt]

4) = sup
0≤t≤T

Eθ1(δ
8
t ) <∞

by the condition (A.4) since

Rt = (
dPθ1

dPθ2

(X))1/4.

Hence

Eθ2 |
1

ϵ2

∫ T

0
δ2tRtdw

H
t |4 ≤ C

ϵ8
γ|θ1 − θ2|3|θ5−8H

1 − θ5−8H
2 |

by the condition (A.4).

Note that, for any v1, v2 ∈ [a, b],

Eθ

∣∣∣∣Γ 1
4
ϵ (v2)− Γ

1
4
ϵ (v1)

∣∣∣∣4
≤ C

1

ϵ8
Eθ2

∣∣∣∣∣
∫ T

0
δ2tRtdw

H
t

∣∣∣∣∣
4

+ C
1

ϵ4
Eθ2

∣∣∣∣∣
∫ T

0
δtRtdM

H
t

∣∣∣∣∣
4

(by Lemma 3.3)

≤ C
1

ϵ8
(θ1 − θ2)

3[θ5−8H
1 − θ5−8H

2 ]

+C
1

ϵ4
(θ1 − θ2)[θ

2−2H
1 − θ2−2H

2 ]2

≤ C
1

ϵ8
ϵ6(v1 − v2)

3τ4−8Hϵ2(v1 − v2)

+C
1

ϵ4
τ2−4H [ϵ2(v1 − v2)]

2

≤ C[(v1 − v2)
4 + (v1 − v2)

2]

where C is a positive constant depending on H and T. This completes the proof of Lemma

5.4.

As a consequence of the Lemma 5.4, it follows that the family of probability measures

generated by the processes {Γ
1
4
ϵ (v), a ≤ v ≤ b} on C[a, b] with uniform topology is tight from

16



the results in Billingsley [2] and hence the family of probability measures generated by the

processes {Lϵ(v), a ≤ v ≤ b} on C[a, b] is tight.

We will now prove a maximal inequality for the fractional Brownian motion which we

will be used later in this discussion. This inequality is a consequence of the Slepian’s lemma

given below (cf. Matsui and Shieh [20]). For a proof of this lemma, see Leadbetter et al.

[18].

Lemma 5.5 : Let {ψ1(t), t ≥ 0} and {ψ2(t), t ≥ 0} be Gaussian processes with continuous

sample paths with E[ψ1(t)] = E[ψ2(t)] = 0 and V ar(ψ1(t)) = V ar(ψ2(t)) = 1 for all t. Let

ri(t, s) denote the covariance function of the process {ψi(t), t ≥ 0} for i = 1, 2. Suppose that,

for some d > 0, r1(t, s) ≥ r2(t, s) for 0 ≤ t, s ≤ d. Let Mi(t) = max0≤s≤t ψi(s), i = 1, 2. Then

P [M1(t) ≤ u] ≥ P [M2(t) ≤ u], u ∈ R

for 0 ≤ t ≤ d.

Let {ŴH
t , t ≥ 0} be a Gaussian Markov process with independent increments such that

E[ŴH
t ] = 0 and Cov(ŴH

s , Ŵ
H
t ) = s2H whenever 0 ≤ s ≤ t. From the Slepian’s lemma stated

above, it follows that

P ( max
0≤t≤T

WH
t ≥ u) ≤ P ( max

0≤t≤T
ŴH

t ≥ u)

for all u ∈ R. Hence, by applying the reflection principle for Gaussian Markov process (cf.

Revuz and Yor (1999)), it follows that

P ( max
0≤t≤T

WH
t ≥ u) ≤ P ( max

0≤t≤T
ŴH

t ≥ u)

≤ 2 P (ŴH
T ≥ u)

for all u ∈ R.

Note that, from the symmetry of the fractional Brownian motion, it follows that

P [ max
0≤t≤T

WH
t ≥ u] = P [− max

0≤t≤T
WH

t ≤ −u]

= P [ min
0≤t≤T

−WH
t ≤ −u]

= P [ min
0≤t≤T

WH
t ≤ −u]

17



and hence

P [ max
0≤t≤T

|WH
t | ≥ u] ≤ P [ max

0≤t≤T
WH

t ≥ u] + P [ min
0≤t≤T

WH
t ≤ −u]

= 2 P [ max
0≤t≤T

WH
t ≥ u]

≤ 2 P [ max
0≤t≤T

ŴH
t ≥ u]

≤ 4P [ŴH
T ≥ u]

from the earlier remarks.

Lemma 5.6: For any λ > 0,

E[exp{λ max
0≤t≤T

|WH
t |}] ≤ 1 + λ

√
2πT 2H exp{λ

2T 2H

2
}.

Proof : Let F (x) denote the distribution function of the random variableW ∗H
T = sup0≤t≤T |WH

t |.
Let {ŴH

t , t ≥ 0} be the Gaussian Markov process with independent increments constructed

above. Note that E(ŴH
T ) = 0 and V ar(ŴH

T ) = T 2H . Let ψ denote a Gaussian random

variable with mean zero and variance one. Then, for any λ > 0,

E[exp{λ sup
0≤t≤T

|WH
t |}] =

∫ ∞

0
eλxdF (x)

= −
∫ ∞

0
eλxd(1− F (x))

= 1 + λ

∫ ∞

0
eλx(1− F (x))dx

= 1 + λ

∫ ∞

0
eλxP [W ∗H

T > x]dx

≤ 1 + 4λ

∫ ∞

0
eλxP [ŴH

T > x]dx

= 1 + 4λ

∫ ∞

0
eλxP [ψTH > x]dx

= 1 + 4λ

∫ ∞

0
eλxP [ψ > xT−H ]dx

≤ 1 + 4λ

∫ ∞

0
eλx

1

2
exp{−x

2T−2H

2
}dx

≤ 1 + λ
√
2πT 2H exp{T

2Hλ2

2
}

18



We now apply Lemma 5.6 to get the following result.

Lemma 5.7: Suppose the conditions (A.1) to (A.5) hold. Let Γϵ(v) = exp{Lϵ(v)}, v ∈ R.

Then, for any compact set K ⊂ [0, T ], and for any 0 < p < 1, there exists a positive constant

C such that

sup
τ∈K

Eτ [(Γϵ(v))
p] ≤ e−C|v|β(5. 3)

for all v.

Proof: Now, for any 0 < p < 1, we will now estimate Eτ (Γϵ(v))
p. For convenience, let v > 0

and let

F1 ≡
∫ τ+ϵ2v

τ
∆tdM

H
t

and

F2 ≡
∫ τ+ϵ2v

τ
∆2

tdw
H
t .

Let q be such that p2 < q < p. Then

Eτ [(Γϵ(v))
p] = Eτ [exp{

p

ϵ
F1 −

p

2ϵ2
F2}]

= Eτ [exp{
p

ϵ
F1 −

q

2ϵ2
F2 −

(p− q)

2ϵ2
F2}].

Let

G1 = exp{−(p− q)

2ϵ2
F2}

and

G2 = exp{p
ϵ
F1 −

q

2ϵ2
F2}.

Then

Eτ [(Γϵ(v))
p] = Eτ [G1G2]

≤ (E[Gp1
1 ])1/p1(E[Gp2

2 ])1/p2

by the Holder inequality for any p1 and p2 such that p2 > 1 and 1
p1

+ 1
p2

= 1. Choose

p2 =
q
p2
> 1. Then p1 =

q
q−p2

. Observe that

Eτ [G
p2
2 ] = Eτ [exp{p2(

p

ϵ
F1 −

q

2ϵ2
F2}]

= Eτ [exp{
q

p2
(
p

ϵ
F1 −

q

2ϵ2
F2}]
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= Eτ [exp{
1

ϵ

q

p
F1 −

1

2ϵ2
q2

p2
F2}].

The random variable under the expectation sign in the last line is the Radon-Nikodym

derivative of two probability measures which are absolutely continuous with respect to each

other by the Girsanov’s theorem for martingales. Hence the expectation is equal to one.

Hence

Eτ [(Γϵ(v))
p] ≤ (E[exp{−p1(p− q)

2ϵ2
F2}])1/p1

= (E[exp{−γϵ−2F2}])1/p1 .

where γ = q(p−q)
2(q−p2)

> 0. Let us now estimate E[e−γϵ−2F2 ]. Applying the inequality

a2 ≥ b2 − 2|b(a− b)|,

it follows that

E[e−γϵ−2F2 ] ≤ exp{−γϵ−2
∫ τ+ϵ2v

τ
∆̄2

tdw
H
t } ×

×Eτ [exp{2γϵ−2(

∫ τ+ϵ2v

τ
(At(τ + ϵ2v,X)−At(τ + ϵ2v, x)|+

+|At(τ,X)−At(τ, x)|)|At(τ + ϵ2v, x)−At(τ, x)|dwH
t }].

We now get an upper bound on the term under the expectation sign on the right side of the

above inequality. Observe that there exists a a constant L > 0, such that,∫ τ+ϵ2v

τ
[At(τ,X)−At(τ, x)]

2 dwH
t ≤

∫ T

0
[At(τ,X)−At(τ, x)]

2 dwH
t

≤ L2[

∫ T

0
|Xt − xt|2 dwH

t ]

≤ L2ϵ2 sup
0≤t≤T

|Xt − xt|2[
∫ T

0
dwH

t ]

≤ L2ϵ2e2LT [

∫ T

0
dwH

t ] sup
0≤t≤T

|WH
t |2 (by Lemma 4.0)

≤ Cϵ2L2e2LTT 2−2H sup
0≤t≤T

|WH
t |2.

for some constant C > 0 possibly depending on T and H. Therefore, under the condition

(A.5), for any τ ′ ∈ [t1, t2], an application of Cauchy-Schwarz inequality implies that

sup
t1≤τ,τ ′≤t2

[

∫ τ+ϵ2v

τ
|At(τ + ϵ2v, x)−At(τ, x)||At(τ

′, X)−At(τ
′, x)|dwH

t ]2
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≤ CL2ϵ4vβe2LTT 2−2H sup
0≤t≤T

|WH
t |2.

Hence

sup
t1≤τ,τ ′≤t2

[

∫ τ+ϵ2v

τ
|At(τ + ϵ2v, x)−At(τ, x)||At(τ

′, X)−At(τ
′, x)|dwH

t ]

≤ Cϵ2v
β
2 sup
0≤t≤T

|WH
t |.

Therefore

sup
t1≤τ≤t2

Eτ [exp{2γϵ−2(

∫ τ+ϵ2v

τ
(|At(τ + ϵ2v,X)−At(τ + ϵ2v, x)|+

+|At(τ,X)−At(τ, x)|)|At(τ + ϵ2v, x)−At(τ, x)|dwH
t }]

≤ Eτ [exp{Cγv
β
2 sup
0≤t≤T

|WH
t |}]

= 1 + γCv
β
2

√
2πT 2H exp{γ

2c26T
2Hvβ

2
}

by Lemma 5.6. Applying arguments similar to those in Lemma 2.4 in Kutoyants (1994), we

get that

sup
τ∈K

Eτ [Γ
p
ϵ (v)] ≤ e−Cvβ

for some positive constant C > 0 depending on T and H.

An application, of the Lemma 5.4 and the Lemma 5.7 proved earlier, shows that the

maximum likelihood estimator τ̂ϵ will lie in the bounded interval [a, b] with probability tending

to one as ϵ→ 0 from Theorem 5.1 in Chapter 1, p.42 of Ibragimov and Khasminskii [12].

We now give a proof of Theorem 3.1.

Proof of Theorem 3.1: In view of Theorem 4.1, it follows that the family of processes

{Lϵ(v), v ∈ [a, b]}, ϵ > 0 on C[a, b] forms a tight family. From the remarks made earlier, it

follows that the finite dimensional distributions of the process {Lϵ(v), v ∈ [a, b]}, ϵ > 0 are

asymptotically Gaussian with the mean −1
2J

∗
τ
2|v| and the variance J∗

τ
2|v| as ϵ→ 0. Hence it

follows that the processes {Lϵ(v), v ∈ [α, β]}, ϵ > 0 on C[a, b] converge weakly to the process

{L0(v), v ∈ [a, b]} on C[a, b] as ϵ→ 0.
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Let v̂ϵ denote the infimum of the points of the maxima of the process {Lϵ(v), v ∈ [a, b]}, ϵ >
0 on C[a, b]. Let v0 denote the location of the maxima of the process {L0(v), v ∈ [a, b]} on

C[a, b]. The location v0 of the maxima is unique almost surely by the fact that the Wiener

process has increments which are Gaussian. Since the process {Lϵ(v), v ∈ [a, b]}, ϵ > 0

on C[a, b] converge weakly to the process {L0(v), v ∈ [a, b]} on C[a, b] as ϵ → 0., by the

continuous mapping theorem, it follows that the distribution of v̂ϵ converges in law to the

distribution of v0 by the continuous mapping theorem (cf. Billingsley [2]). Lemma 5.7 implies

that the random variable v̂ϵ = ϵ−2[τ̂ϵ − τ0] ∈ [a, b] with probability tending to one as ϵ → 0.

Let τ be the true change point. Following the discussion given above, it follows that the

random variable

v̂ϵ = ϵ−2[τ̂ϵ − τ ]

converges in law to the distribution of the random variable v0, the location of the maximum

of the process {L0(v),−∞ < v <∞}, as ϵ→ 0.

Remarks : We have assumed that the Hurst index H of the driving force for the fractional

diffusion process is known through out the earlier discussions. It would be interesting to

find out the asymptotic behaviour of a suitably transformed maximum likelihood estimator

τ̂ϵ when H is unknown by using an estimator Ĥn of H and studying the corresponding

plug-in-estimator.

Example : Suppose the process {Xt, 0 ≤ t ≤ T} satisfies the stochastic differential system

dX(t) = gdt+ ϵdWH
t , 0 ≤ t ≤ τ

dX(t) = hdt+ ϵdWH
t , τ < t ≤ T

where g and h are constants with g ̸= h. . This is the problem of estimation of the change

point for a fractional Brownian motion with a linear shift. It can be seen that the function

A(t, x) does not depend on x in this example and the conditions (A.1)−(A.5) hold. Let τ̂ϵ be

the maximum likelihood estimator. An application of Theorem 3.1 implies that the random

variable ϵ−2(τ̂ϵ − τ) has a limiting distribution as ϵ→ 0.
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