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1 Introduction

Long range dependence phenomena is said to occur in a time series {Xn, n ≥ 0} if the
Cov(X0, Xn) of the time series tends to zero as n→ ∞ and yet it satisfies the condition

∞∑
n=0

|Cov(X0, Xn)| = ∞.

In other words, Cov(X0, Xn) tends to zero but so slowly that their sums diverge. This
phenomenon was first observed by the hydrologist Hurst (1951) on projects involving the
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design of reservoirs along the Nile river (cf. Montanari (2003)) and by others in hydrological
time series. It was observed that a similar phenomenon occurs in problems concerned with
modelling traffic patterns of packet flows in high-speed data net works such as internet (cf.
Willinger et al. (2003), Norros (2003)). Long range dependence is related to the concept of
self-similarity for a stochastic process. A stochastic process {X(t), t ∈ R} is said to be H-
self-similar with index H > 0, if for every a > 0, the process {X(at), t ∈ R} and the process
{aHX(t), t ∈ R} have the same finite dimensional distributions. If a process is self-similar
with stationary increments, then the increments form a stationary time series exhibiting long
range dependence. A gaussian self-similar process with stationary increments 0 < H < 1 is
called a fractional Brownian motion (fBm).

Diffusion processes and diffusion type processes satisfying stochastic differential equa-
tions (SDE) are used for stochastic modeling in a wide variety of sciences such as population
genetics, economic proceeses, signal processing as well as for modeling sunspot activity and
more recently in mathematical finance. Statistical inference for diffusion type processes
satisfying stochastic differential equations driven by Wiener processes has been studied ear-
lier and a comprehensive survey of various methods is given in Prakasa Rao (1999). There
has been a recent interest to study similar problems for stochastic processes driven by a
fractional Brownian motion. In a recent paper, Kleptsyna and Le Breton (2002) studied
parameter estimation problems for fractional Ornstein-Uhlenbeck type process. This is a
fractional analogue of the Ornstein-Uhlenbeck process, that is, a continuous time first order
autoregressive process X = {Xt, t ≥ 0} which is the solution of a one-dimensional homoge-
neous linear stochastic differential equation driven by a fractional Brownian motion (fBm)
WH = {WH

t , t ≥ 0} with Hurst parameter H ∈ [1/2, 1). Such a process is the unique
Gaussian process satisfying the linear integral equation

Xt = θ

∫ t

0
Xsds+ σWH

t , t ≥ 0.(1.1)

They investigate the problem of estimation of the parameters θ and σ2 based on the obser-
vation {Xs, 0 ≤ s ≤ T} and prove that the maximum likelihood estimator θ̂T is strongly
consistent as T → ∞.

Maximum likelihood estimation and Bayes estimation for more general classes of stochas-
tic processes satisfying linear stochastic differential equations driven fractional Brownian
motion is investigated in Prakasa Rao (2003). A comprehensive review on statistical infer-
ence for fractional diffusion processes is given in a monograph in Prakasa Rao (2010).

Parameter estimation for the stochastically perturbed Navier-Stokes equations has been
recently studied by Cialenco and Glatt-Hotz (2011). They consider a parameter estimation
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problem to determine the viscosity ν of a stochastically perturbed 2D Navier-Stokes system
driven by Brownian motion. They derive different types of estimators based on a single
sample path observed over a finite time interval and showed that these estimators are
consistent and asymptotically normal under some conditions. We have studied problems
of parameter estimation for stochastic partial differential equations driven by an infinite
dimensional fractional Brownian motion in Prakasa Rao (2004).

Our aim in this paper is to study the problems of parameter estimation for two-
dimensional stochastically perturbed Navier-Stokes equations driven by an infinite dimen-
sional fractional Brownian motion based on a single sample path observed over a finite time
interval.

2 Preliminaries

Let (Ω,F , (Ft), P ) be a stochastic basis satisfying the usual conditions.The natural fitration
of a stochastic process is understood as the P -completion of the filtration generated by this
process.

Let WH = {WH
t , t ≥ 0} be a normalized fractional Brownian motion with Hurst pa-

rameter H ∈ [12 , 1), that is, a Gaussian process with continuous sample paths such that
WH

0 = 0, E(WH
t ) = 0 and

E(WH
s W

H
t ) =

1

2
[s2H + t2H − |s− t|2H ], t ≥ 0, s ≥ 0.(2.1)

Let us consider a stochastic process Y = {Yt, t ≥ 0} defined by the stochastic integral
equation

Yt =

∫ t

0
C(s)ds+

∫ t

0
B(s)dWH

s , t ≥ 0(2.2)

where C = {C(t), t ≥ 0} is an (Ft)-adapted process and B(t) is a nonvanishing nonrandom
function. For convenience we write the above integral equation in the form of a stochastic
differential equation

dYt = C(t)dt+B(t)dWH
t , t ≥ 0(2.3)

driven by the fractional Brownian motion WH . The integral∫ t

0
B(s)dWH

s(2.4)
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is not a stochastic integral in the Ito sense but one can define the integral of a deterministic
function with respect to the fBM in a natural sense (cf. Norros et al. (1999)). Even though
the process Y is not a semimartingale, one can associate a semimartingale Z = {Zt, t ≥ 0}
which is called a fundamental semimartingale such that the natural filtration (Zt) of the
process Z coincides with the natural filtration (Yt) of the process Y (Kleptsyna et al.
(2000)). Define, for 0 < s < t,

kH = 2HΓ (
3

2
−H)Γ(H +

1

2
),(2.5)

kH(t, s) = k−1
H s

1
2
−H(t− s)

1
2
−H ,(2.6)

λH =
2H Γ(3− 2H)Γ(H + 1

2)

Γ(32 −H)
,(2.7)

wH
t = λ−1

H t2−2H ,(2.8)

and

MH
t =

∫ t

0
kH(t, s)dWH

s , t ≥ 0.(2.9)

The processMH is a Gaussian martingale, called the fundamental martingale (cf. Norros et
al. (1999)) and its quadratic variation < MH

t >= wH
t . Further more the natural filtration

of the martingale MH coincides with the natural fitration of the fBM WH . In fact the
stochastic integral ∫ t

0
B(s)dWH

s(2.10)

can be represented in terms of the stochastic integral with respect to the martingale MH .
For a measurable function f on [0, T ], let

Kf
H(t, s) = −2H

d

ds

∫ t

s
f(r)rH− 1

2 (r − s)H− 1
2dr, 0 ≤ s ≤ t(2.11)

when the derivative exists in the sense of absolute continuity with respect to the Lebesgue
measure (see Samko et al. (1993) for sufficient conditions). The following result is due to
Kleptsyna et al. (2000).

Therorem 2.1: Let MH be the fundamental martingale associated with the fBM WH

defined by (2.9). Then ∫ t

0
f(s)dWH

s =

∫ t

0
Kf

H(t, s)dMH
s , t ∈ [0, T ](2.12)
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a.s [P ] whenever both sides are well defined.

Suppose the sample paths of the process {C(t)
B(t) , t ≥ 0} are smooth enough (see Samko et

al. (1993)) so that

QH(t) =
d

dwH
t

∫ t

0
kH(t, s)

C(s)

B(s)
ds, t ∈ [0, T ](2.13)

is well-defined where wH and kH are as defined in (2.8) and (2.6) respectively and the
derivative is understood in the sense of absoulute continuity. The following theorem due
to Kleptsyna et al. (2000) associates a fundamental semimartingale Z associated with the
process Y such that the natural filtration (Zt) coincides with the natural filtration (Yt) of
Y.

Theorem 2.2: Suppose the sample paths of the process QH defined by (2.13) belong P -a.s
to L2([0, T ], dwH) where wH is as defined by (2.8). Let the process Z = (Zt, t ∈ [0, T ]) be
defined by

Zt =

∫ t

0
kH(t, s)B−1(s)dYs(2.14)

where the function kH(t, s) is as defined in (2.6). Then the following results hold:

(i) The process Z is an (Ft) -semimartingale with the decomposition

Zt =

∫ t

0
QH(s)dwH

s +MH
t(2.15)

where MH is the fundamental martingale defined by (2.9),
(ii) the process Y admits the representation

Yt =

∫ t

0
KB

H(t, s)dZs(2.16)

where the function KB
H is as defined in (2.11), and

(iii) the natural fitrations of (Zt) and (Yt) coincide.

Kleptsyna et al. (2000) derived the following Girsanov type formula as a consequence
of the Theorem 2.2.

Theorem 2.3: Suppose the assumptions of Theorem 2.2 hold. Define

ΛH(T ) = exp{−
∫ T

0
QH(t)dMH

t − 1

2

∫ t

0
Q2

H(t)dwH
t }.(2.17)
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Suppose that E(ΛH(T )) = 1. Then the measure P ∗ = ΛH(T )P is a probability measure
and the probability measure of the process Y under P ∗ is the same as that of the process
V defined by

Vt =

∫ t

0
B(s)dWH

s , 0 ≤ t ≤ T.(2.18)

.

3 Stochastic 2D Navier-Stokes equation driven by an infinite
dimensional fBm

Consider the 2D Navier-Stokes equation driven by an infinite dimensional fBM with Hurst
index H:

dU + ((U.▽)U − ν △ U +▽P )dt = σdWH ,(3.1)

▽.U = 0,

U(0) = U0

which models the flow of a viscous incompressible fluid. Here U = (U1, U2) is the velocity
field and P the pressure. The parameter ν > 0 is the kinematic viscosity of the fluid and
is the parameter to be estimated. We would like to estimate the parameter ν based on the
sample path U(ω) observed over a finite time interval [0, T ]. We assume that the governing
equations (3.1) evolve over a domain D. We will consider two possible boundary conditions.
In the first case, we suppose that the flow occurs over all of R2 with D = [−L/2, L/2]2 for
some L > 0 and we impose the periodic boundary condition:

U(x+ Lej , t) = U(x, t),x ∈ R2, t ≥ 0;

∫
D
U(x)dx = 0.(3.2)

We will also consider the case when D is a bounded subset of R2 with a smooth boundary
∂D and assume the Dirichlet (no slip) boundary condition:

U(x, t) = 0, x ∈ ∂D, t ≥ 0.(3.3)

The stochastic forcing function is an additive space-time fractional noise given by

σdWH =
∑
k

λ−γ
k ΦkdW

H
k(3.4)
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where Φk are the eigenfunctions of the Stokes operator, λk are the associated eigenvalues
and WH

k , k ≥ 1 are one-dimensional independent fractional Brownian motions. We assume
that γ is real constant greater than one. Note that the space-time correlation structure can
be written formally as

E[σdWH(x, t)σdWH(y, s)] = K(x,y)(|t|2H + |s|2H − |t− s|2H)(3.5)

where

K(x,y) =
∞∑
k=1

λ−2γ
k Φk(x)Φk(y).

Consider the projection of the equation (3.1) down to a finite dimensional space and for
each N we consider a stochastic system of the form

dUN + (νAUN + PNB(U))dt = PNσdW
H ; U(0) = U0(3.6)

where PN is the projection operator on the finite dimensional space generated by the first
N Fourier eigenvalues of the Stokes operator.

We now describe the mathematical background for the stochastic Navier-Stokes equa-
tions following Cialenco and Glatt-Holtz (2011). We can formulate the equation (3.1) as an
infinite dimensional stochastic evolution equation of the form

dU + (νAU +B(U))dt = σdWH(3.7)

U(0) = U0.

We now introduce basic function spaces in detail as described in Cialenco and Glatt-Holtz
(2011) for completeness.

Let us first consider the space associated with a Dirichlet (no slip) boundary condition.
Let J = {U ∈ L2(D)2 : ▽.U = 0, U.n = 0} where n is the outer pointing unit normal to ∂D.
The set J is endowed as a Hilbert space with the L2 inner product (U b, U c) =

∫
D U

bU cdx
and the associated norm |U | = (U,U)1/2. The Lerang-Hopf projector PJ is defined as the
orthogonal projection of L2(D)d onto J. Let V = {U ∈ H1

0 (D)2 : ▽.U = 0} and endow
this space with the inner product ((U b, U c)) =

∫
M ▽U b. ▽ U cdx. Due to the Dirichlet

boundary condition (3.3), the Poincare inequality |U | ≤ c||U || holds for U ∈ V justifying
this definition.

Suppose the periodic boundary condition (3.2) holds. We take D = [−L/2, L/2]2 and
define the spaces L2

per(D)2, H1
per(D)2 to be the families of vector fields U = U(x) which are
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L periodic in each direction and which belong to L2(G)2 and H1(G)2 respectively for every
open bounded set G ⊂ R2.. We define

J = {U ∈ L2
per(D)2 : ▽.U = 0,

∫
D
U(x)dx = 0}(3.8)

and

V = {U ∈ H1
per(D)2 : ▽.U = 0,

∫
D
U(x)dx = 0}.(3.9)

The spaces J and V are endowed with the norms |.| and ||.|| respectively as defined earlier.
We impose the mean zero condition for defining J and V so that the Poincare inequality
holds (cf. Temam (1995)).

The linear portion of the equation (3.1) is described by the Stokes operator A = −PJ△
which is an unbounded operator from J to J with the domain D(A) = H2(M) ∩ V. Since
A is self-adjoint with a compact inverse A−1 : J → D(A), we apply the theory of compact
symmetric operators which ensure the existence of an orthonormal basis {Φk, k ≥ 1} for J
of eigenfunctions of A with the associated eigenvalues {λk, k ≥ 1} forming an unbounded
increasing sequence. Furthermore

λk
kλ1

→ 1 as k → ∞.

For more details on the asymptotic behaviour of the sequence {λk, k ≥ 1}, see Babenko
(1982) and Metivier (1978) for the no slip case (3.3) and Constantin and Foias (1988) for
the periodic case (3.2).

Define HN = Span{Φ1, . . . ,ΦN} and let PN be the projection from J onto this space.
We let P̃N = I − PN .

Given α > 0, let D(Aα) = {U ∈ J :
∑

k λ
2α
k |uk|2 < ∞} where uk = (U,Φk). For

U ∈ D(Aα), define
AαU =

∑
k

λαkukΦk

whenever U =
∑

k ukΦk. Note that

|Aα2PNU | ≤ λα2−α1
N |Aα1PNU |(3.10)

and
|Aα1P̃NU | ≤ λα1−α2

N |Aα2P̃NU |(3.11)

for any α1 < α2.
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We now consider the stochastic part of the equation (3.1). We fix a stochastic basis
(Ω,F , {Ft, t ≥ 0}, P, {WH

k , k ≥ 1}) which is a filtered probability space with {WH
k , k ≥ 1},

a sequence of independent standard fractional Brownian motions relative to the filtration
{Ft, t ≥ 0}.We assume that Ft is complete and right continuous (cf. Da Prato and Zabczyk
(1992)). Formally,WH =

∑
k≥0ΦkW

H
k andWH can be considered as a cylindrical fractional

Brownian motion.

Consider the family of Hilbert-Schmidt operators mapping J into D(Aβ), β ≥ 0. We
denote the family by L2(H,D(Aβ)). We assume that σ, understood as an operator, has the
form

σΦk = λ−γ
k Φk

and we write

σdWH(t) =
∞∑
k=1

λ−γ
k ΦkdW

H
k (t), t ≥ 0.

4 Estimation for stochastic Stokes equation

Stochastic differential equations in infinite dimensions driven by a cylindrical Brownian
motion are investigated in Rozovskii (1990), Da Prato and Zabczyk (1992) and Kallianpur
and Xiong (1995) among others. Stochastic partial differential equations driven by infinite
dimensional fractional Brownian motion have been studied in Tindel et al. (2003) and
estimation for parameters involved for such processes are discussed in Prakasa Rao (2004,
2010).

We consider the linear system associated to (3.7):

dŪ + νAŪdt =
∑
k

λ−γ
k ΦkdW

H
k , Ū(0) = U0.(4.1)

Let {ũk, k ≥ 1} denote the Fourier coefficients of the solution Ū with respect to the
system {Φk, k ≥ 1} in J , that is ũk = (Ū ,Φk), k ≥ 1. By (4.1), we observe that each Fourier
coefficient ũk represents a one-dimensional fractional Ornstein-Uhlenbeck process satisfying
the stochastic differential equation

dũk + νλkũkdt = λ−γ
k dWH

k , ũk(0) = ū0k, k ≥ 1.(4.2)
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Let Prν be the probability measure generated by Ū when ν is the true parameter. Suppose
ν0 is the true parameter. Following the discussion in Section 2, we define

MH
k (t) =

∫ t

0
kH(t, s)dWH

k (s), 0 ≤ t ≤ T,(4.3)

Qk(t) =
d

dwH
t

∫ t

0
kH(t, s)ũk(s)ds, 0 ≤ t ≤ T(4.4)

and

Zk(t) =

∫ t

0
kH(t, s)dũk(s), 0 ≤ t ≤ T.(4.5)

Then

Zk(t) = −νλk
∫ t

0
Qk(s)dw

H
s + λ−γ

k MH
k (t)(4.6)

and it follows that

ũk(t) =

∫ t

0
KH(t, s)dZk(s)(4.7)

where

KH(t, s) = H(2H − 1)
d

ds

∫ t

s
rH− 1

2 (r − s)H− 3
2dr, 0 ≤ s ≤ t.(4.8)

Then MH
k is a zero mean Gaussian martingale. Furthermore, it follows that the process

{Zk(t), t ≥ 0} is a semimartingale and the natural filtrations (Zk,t) and (Uk,t) of the pro-
cesses {Zk(t), t ≥ 0} and {ũk(t), t ≥ 0} respectively coincide. Let Prk,ν be the probability
measure generated by the process {ũk(t), 0 ≤ t ≤ T} when ν is the true parameter. Let ν0
be the true parameter. It follows by the Girsanov type theorem discussed in Section 2 that

log
dPrk,ν
dPrk,ν0

= (−νλk + ν0λk)

∫ T

0
Qk(t)dZk(t)(4.9)

−1

2
((−νλk)2 − (−ν0λk)2)

∫ T

0
Q2

k(t)dw
H
t .

Let

uN (t, x) =
N∑
k=1

ũk(t)Φk(x)(4.10)

From the independence of the processes {WH
i , 1 ≤ i ≤ N} and hence of the processes

{ũk, 1 ≤ k ≤ N}, it follows that the Radon-Nikodym derivative of the probability measure
PrNν generated by the process {uN (t), 0 ≤ t ≤ T} when ν is the true parameter with respect
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to the probability measure PrNν0 generated by the process {uN (t), 0 ≤ t ≤ T} when ν0 is
the true parameter is given by

log
dPrNν
dPrNν0

(uN ) =
N∑
k=1

[λk(−ν + ν0)

∫ T

0
Qk(t)dZk(t)(4.11)

−1

2
λ2k(ν

2 − ν20)

∫ T

0
Q2

k(t)dw
H
t ].

It is easy to check that the maximum likelihood estimator ν̂N of the parameter ν based on
the projection uN of u is given by

ν̂N = −
∑N

k=1 λk
∫ T
0 Qk(t)dZk(t)∑N

k=1 λ
2
k

∫ T
0 Q2

k(t)dw
H
t

.(4.12)

Suppose ν0 is the true parameter. Then

ν̂N − ν0 =

∑N
k=1 λ

−γ+1
k

∫ T
0 Qk(t)dM

H
k (t)∑N

k=1 λ
−2γ+2
k

∫ T
0 Q2

k(t)dw
H
t

.(4.13)

Observe that the processes MH
k , 1 ≤ k ≤ N are independent zero mean Gaussian martin-

gales with < MH
k >= wH , 1 ≤ k ≤ N.

We will now state two results giving the Law of Large Numbers (LLN) and the Central
Limit Theorem (CLT) for sums of independent random variables which will be used to
prove the consistency and the asymptotic normality of the maximum likelihood estimator
ν̂N under some conditions.

Theorem 4.1 : (LLN) Let {ψn, n ≥ 1} be a sequence of independent random variables
with finite variances and {bn, n ≥ 1} be an increasing sequence of positive numbers such
that limn→∞ bn = ∞. Further suppose that

∞∑
n=1

V ar(ψn)

b2n
<∞.(4.14)

Then

lim
n→∞

∑n
k=1(ψk − E[ψk])

bn
= 0 a.s.(4.15)

Theorem 4.2 : (CLT) Let S = (Ω,F , P, {Ft, t ≥ 0}, {Mk, k ≥ 1}) be a stochastic basis
where Mk, k ≥ 1 is a sequence of independent martingales. Suppose further that Rk is a
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predictable process corresponding to the martingale Mk for each k ≥ 1 such that

lim
N→∞

∑N
k=1

∫ T
0 R2

k(t)d < Mk > (t)∑N
k=1E(

∫ T
0 R2

k(t)d < Mk > (t))
= 1(4.16)

in probability. Then ∑N
k=1

∫ T
0 Rk(t)dMk(t)

[
∑N

k=1

∫ T
0 E(R2

k(t))d < Mk(t) >)]1/2
L→ N(0, 1) as N → ∞.(4.17)

Theorem 4.1 follows from Theorem IV.3.2. in Shiryayev (1996) and Theorem 4.2 follows
from Theorem 5.5.4 (II) in Liptser and Shiryayev (1989) or from related results in Prakasa
Rao (1999).

Let

αk = λ−γ+1
k

∫ T

0
Qk(t)dM

H
k (t), k ≥ 1(4.18)

and

βk = λ−2γ+2
k

∫ T

0
Q2

k(t)dw
H
t , k ≥ 1.(4.19)

Observe that the sequence {αk, k ≥ 1} is a sequence of independent random variables with
mean zero and

V ar(αk) = λ−2γ+2
k

∫ T

0
E(Q2

k(t))dw
H
t = E(βk), k ≥ 1.(4.20)

and the sequence {βk, k ≥ 1} is also a sequence of nonnegative independent random vari-
ables. Assume that E(βk) <∞, k ≥ 1. Let

bN =
N∑
k=1

V ar(αk) =
N∑
k=1

E(βk).(4.21)

Note that {bN , N ≥ 1} is an increasing sequence of positive numbers. Suppose the sequence
{bN , N ≥ 1} satisfies the following conditions:

(C1) bN → ∞ as N → ∞ and
∑∞

N=1
V ar(αk)

b2
k

<∞; and

(C2) bN∑N

k=1
βk

= O(1) a.s..
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Then

ν̂N − ν0 =

∑N
k=1 αk∑N
k=1 βk

(4.22)

=

∑N
k=1 αk∑N

k=1E(βk)

bN∑N
k=1 βk

= T1NT2N (say).

Under the condition (C1), Theorem 4.1 implies that T1,N → 0 almost surely as N → ∞
and T2N = O(1) a.s. under the condition (C2). Hence

ν̂N − ν0
a.s.→ 0(4.23)

as N → ∞. This implies the strong consistency of the estimator ν̂N under the conditions
(C1) and (C2). Suppose that

(C3) bN∑N

k=1
βk

p→ 1 as N → ∞.

Let δN = [
∑N

k=1 βk]
1/2. Applying Theorem 4.2, we get that

δN (νN − ν0) = [δN ]−1
N∑
k=1

αk(4.24)

=

∑N
k=1 λ

−γ+1
k

∫ T
0 Qk(t)dM

H
k (t)

[
∑N

k=1 λ
−2γ+2
k

∫ T
0 E(Q2

k(t))dw
H
t ]1/2

and the last term converges in law to the standard normal distribution. Hence it follows
that

δN (ν̂N − ν0)
L→ N(0, 1) as N → ∞(4.25)

under the condition (C3).

5 Estimation for 2D stochastic Navier-Stokes equation

Let PN be the projection of the solution U of the stochastic Navier-Stokes equation (3.7)
onto JN = PNJ ≃ RN . Then UN satisfies the finite dimensional system

dUN = −(νAUN + ψN )dt+ PNσdW
H , UN (0) = UN

0(5.1)



14

where ψN (t) = PN (B(U)). To obtain an estimator of ν, we consider the equation as a
stochastic differential equation in RN driven by the multidimensional fractional Brownian
motion WH ≡ (WH

1 , . . . ,W
H
N ) with independent components. Following the arguments in

Prakasa Rao (2003) (cf. Prakasa Rao (2010), p. 47), we can construct a corresponding
stochastic differential system driven by the multidimensional Gaussian process MN,H =
(MH

1 , . . . ,M
H
N ) with independent martingale components each with the quadratic variation

wH . Following the definition (2.13), construct N -dimensional process QN,H defined by

QN,H
i (t) =

d

dwH
t

∫ t

0
kH(t, s)(νAUN + ψN )i[(PNσ)

−1]idt(5.2)

where (PNσ)
−1 = diag(σ−1

1 , . . . , σ−1
N ) = diag(λγ1 , . . . , λ

γ
N ). Here α′ denotes the transpose of

the vector α in RN and (α)i denotes the i-th component of the vector α in RN . Note that

QN,H
i (t) = ν

d

dwH
t

∫ t

0
kH(t, s)(AUN )i[(PNσ)

−1]idt(5.3)

+
d

dwH
t

∫ t

0
kH(t, s)(ψN )i[(PNσ)

−1]idt.

= ν(J1N )i(t) + (J2N )i(t) (say)

Let QN,H = (QN,H
1 , . . . , QN,H

N ). Let PrN,T
ν be the probability measure generated by the

process UN . It can be checked that the Radon-Nikodym derivative dPrN,T
ν

dPrN,T
ν0

is given by

log
dPrN,T

ν

dPrN,T
ν0

= (ν − ν0)

∫ T

0
(J1N (t))′dMN,H(t)(5.4)

−1

2
(ν − ν0)

2
∫ T

0
[J1N (t)]′J1N (t)dwH

t .

and it is independent of the process J2N and hence of the process ψN (cf. Prakasa Rao
(2003, 2010)). Maximizing the likelihood ratio or the Radon-Nikodym derivative derived
above with respect to the unknown parameter ν, we can obtain the maximum likelihood
estimator νN of ν. Let νN be the maximum likelihood estimator. Furthermore, it can be
checked that

νN − ν0 =

∫ T
0 (J1N (t))′dMN,H(t)∫ T

0 (J1N (t))′(J1N (t))dwH
t

=
V1N
V2N

(say).(5.5)

Note that the term V1N is a sum of independent random variables and E[V2N ] = V ar(V1N ).
Applying Theorems 4.1 and 4.2 again, it is possible to give sufficient conditions for the
strong consistency and the asymptotic normality of the estimator νN .
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